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Overview

• Overview of natural gradient and second-order optimization of neural nets 

• Kronecker-Factored Approximate Curvature (K-FAC), an approximate natural 
gradient optimizer which scales to large neural networks 

• based on fitting a probabilistic graphical model to the gradient computation 

• Current work: a variational Bayesian interpretation of K-FAC



Overview

Background material from a forthcoming Distill article.

Matt JohnsonKatherine Ye Chris Olah



Most neural networks are still trained using variants of stochastic gradient 
descent (SGD). 

Variants: SGD with momentum, Adam, etc.

Overview
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Backpropagation is a way of computing  
the gradient, which is fed into an optimization  
algorithm.

batch gradient descent

stochastic gradient descent



SGD is a first-order optimization algorithm (only uses first derivatives) 

First-order optimizers can perform badly when the curvature is badly 
conditioned

bounce around a lot in high curvature directions 

make slow progress in low curvature directions

Overview



Recap: normalization

original data multiply x1 by 5 add 5 to both



Recap: normalization



Recap: normalization



Mapping a manifold to a coordinate system distorts distances

These 2-D cartoons are misleading.

Background: neural net optimization

When we train a network, we’re trying to learn a function, but we 
need to parameterize it in terms of weights and biases.

Natural gradient: compute the gradient on the globe, not on the map

Millions of optimization variables, contours stretched by a factor of millions



Recap: Rosenbrock Function



If only we could do gradient descent on output space…

Recap: steepest descent



Recap: steepest descent

Steepest descent:

linear 
approximation

dissimilarity 
measure

Euclidean D 
=> gradient descent

Another Mahalanobis 
(quadratic) metric



Take the quadratic approximation:

Recap: steepest descent



Steepest descent mirrors gradient descent in output space:

Even though “gradient descent on output space” has no analogue 
for neural nets, this steepest descent insight does generalize!

Recap: steepest descent



Recap: Fisher metric and natural gradient

For fitting probability distributions (e.g. maximum likelihood), a natural 
dissimilarity measure is KL divergence.

DKL(q�p) = Ex�q[log q(x)� log p(x)]

The second-order Taylor approximation to KL divergence is the 
Fisher information matrix:

�2
�DKL = F = Covx�p� (�� log p�(x))

Steepest ascent direction, called the natural gradient:

�̃�h = F�1��h
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If you phrase your algorithm in terms of Fisher information, 
it’s invariant to reparameterization.

Recap: Fisher metric and natural gradient



When we train a neural net, we’re learning a function. How do we define a 
distance between functions? 

Assume we have a dissimilarity metric d on the output space,  
e.g.  

Second-order Taylor approximation:

Background: natural gradient
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D(f, g) = Ex�D[�(f(x), g(x))]
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2
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This is the generalized Gauss-Newton matrix.



Many neural networks output a predictive distribution (e.g. over categories). 

We can measure the “distance” between two networks in terms of the 
average KL divergence between their predictive distributions 

The Fisher matrix is the second-order Taylor approximation to this average 

Background: natural gradient
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This equals the covariance of the  
log-likelihood derivatives:

F� = Cov x�pdata
y�r�(y | x)

(�� log r�(y | x))

(Amari, 1998)



Three optimization algorithms
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Three optimization algorithms

Newton-Raphson is the canonical second-order optimization algorithm. 

It works very well for convex cost functions (as long as the number of 
optimization variables isn’t too large.) 

In a non-convex setting, it looks for critical points, which could be local 
maxima or saddle points. 

For neural nets, saddle points are common because of symmetries in the 
weights.

� � � � �H�1�h(�) H =
�2h

��2



Newton-Rhapson and GGN



G is positive semidefinite as long as the loss function L(z) is convex, because it 
is a linear slice of a convex function. 

This means GGN is guaranteed to give a descent direction — a very useful 
property in non-convex optimization. 

The second term of the Hessian vanishes if the prediction errors are very small, 
in which case G is a good approximation to H. But this might not happen, i.e. if 
your model can’t fit all the training data. 

�h(�)��� = ���h(�)�G�1�h(�)
� 0
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vanishes if prediction 
errors are small

Newton-Rhapson and GGN



Three optimization algorithms
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GGN and natural gradient

Rewrite the Fisher matrix:

= 0 since y is sampled from 
the model’s predictions
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GGN and natural gradient
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Fisher matrix w.r.t. the 
output layer

If the loss function L is negative log-likelihood for an exponential family 
and the network’s outputs are the natural parameters, then the Fisher 
matrix in the top layer is the same as the Hessian. 

Examples: softmax-cross-entropy, squared error (i.e. Gaussian) 

In this case, this expression reduces to the GGN matrix:
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Three optimization algorithms
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So all three algorithms are related!  This is why we call natural gradient a 
“second-order optimizer.”



Background: natural gradient (Amari, 1998)

Problem: dimension of F is the number of trainable parameters 

Modern networks can have tens of millions of parameters! 

e.g. weight matrix between two 1000-unit layers has  
1000 x 1000 = 1 million parameters 

Cannot store a dense 1 million x 1 million matrix, let alone compute F�1 �L
��



Background: approximate second-order training

• diagonal methods 

- e.g. Adagrad, RMSProp, Adam 

- very little overhead, but sometimes not much better than SGD 

• iterative methods 

- e.g. Hessian-Free optimization (Martens, 2010); Byrd et al. (2011); TRPO (Schulman et 
al., 2015) 

- may require many iterations for each weight update 

- only uses metric/curvature information from a single batch 

• subspace-based methods 

- e.g. Krylov subspace descent (Vinyals and Povey 2011); sum-of-functions (Sohl-
Dickstein et al., 2014) 

- can be memory intensive



Optimizing neural networks using
Kronecker-factored approximate curvature

A Kronecker-factored Fisher matrix
for convolution layers

James
Martens



Probabilistic models of the gradient computation

Recall:     is the covariance matrix of the log-likelihood gradient F

F� = Cov x�pdata
y�r�(y | x)

(�� log r�(y | x))

Samples from this distribution for a regression problem:



Strategy: impose conditional independence structure based on:

Recall that    may be 1 million x 1 million or larger

Want a probabilistic model such that:

the distribution can be compactly represented

       can be efficiently computedF�1

F

Probabilistic models of the gradient computation

Can make use of what we know about probabilistic 
graphical models!

structure of the computation graph

empirical observations



Natural gradient for classification networks



Natural gradient for classification networks

s� = W�h��1 + b�
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Forward pass: Backward pass:

Approximate with a linear-Gaussian model:



Kronecker-Factored Approximate Curvature (K-FAC)

exact approximation

Quality of approximate Fisher matrix on a very small network:



Kronecker-Factored Approximate Curvature (K-FAC)

Assume a fully connected network

Impose probabilistic modeling assumptions: 

• dependencies between different layers of the network 

• Option 1: chain graphical model. Principled, but complicated. 

• Option 2: full independence between layers. Simple to implement, and 
works almost as well in practice. 

• activations and activation gradients are independent

• we can show they are uncorrelated. Note: this depends on the 
activations being sampled from the model’s predictions. 

exact block tridiagonal block diagonal



Kronecker products

Kronecker product:
A�B =

�

��
a11B · · · a1nB

... · · ·
am1B amnB

�

��

vec operator:



Kronecker products

Matrix multiplication is a linear operation, so we should be 
able to write it as a matrix-vector product. 

Kronecker products let us do this.



The more general identity:

Other convenient identities:

(A�B)�1 = A�1 �B�1

(A�B)� = A� �B�

Justification:

(A�1 �B�1)(A�B)vec(X) = (A�1 �B�1)vec(BXA�)

= vec(B�1BXA�A��)
= vec(X)

(A�B)vec(X) = vec(BXA�)

Kronecker products



Kronecker-Factored Approximate Curvature (K-FAC)
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Entries of the Fisher matrix for one layer of a multilayer perceptron:
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Kronecker-Factored Approximate Curvature (K-FAC)

Under the approximation that layers are independent, 

     and      represent covariance statistics that are estimated during training. 

Efficient computation of the approximate natural gradient:
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Representation is comparable in size to the number of weights!

Only involves operations on matrices approximately the size of W

Small constant factor overhead (1.5x) compared with SGD
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Experiments

Deep autoencoders (wall clock)

MNIST faces



Experiments

Deep autoencoders (iterations)
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Figure 11: More results from our second experiment showing training error versus iteration on the
CURVES (top row), MNIST (middle row), and FACES (bottom row) deep autoencoder problems. The
plots on the right are zoomed in versions of those on the left which highlight the difference in per-iteration
progress made by the different versions of K-FAC.
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Figure 11: More results from our second experiment showing training error versus iteration on the
CURVES (top row), MNIST (middle row), and FACES (bottom row) deep autoencoder problems. The
plots on the right are zoomed in versions of those on the left which highlight the difference in per-iteration
progress made by the different versions of K-FAC.
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Kronecker Factors for Convolution (KFC)

Can we extend this to convolutional networks? 

Types of layers in conv nets: 

Fully connected: already covered by K-FAC 

Pooling: no parameters, so we don’t need to worry about them 

Normalization: few parameters; can fit a full covariance matrix 

Convolution: this is what I’ll focus on!

si,t =
�

�

wi,j,�aj,t+� + bi,

a�
i,t = �(si,t)



Kronecker Factors for Convolution (KFC)

For tractability, we must make some modeling assumptions: 

• activations and derivatives are independent (or jointly Gaussian) 
• no between-layer correlations 
• spatial homogeneity 

- implicitly assumed by conv nets 

• spatially uncorrelated derivatives 

Under these assumptions, we derive the same Kronecker-factorized 
approximation and update rules as in the fully connected case.



Are the error derivatives actually spatially uncorrelated?

Spatial autocorrelations 
of activations

Spatial autocorrelations 
of error derivatives

Kronecker Factors for Convolution (KFC)



conv nets (wall clock)

4.8x

7.5x

3.4x

6.3x

test

training

test

training

Experiments



Invariance to reparameterization

One justification of (exact) natural gradient descent  
is that it’s invariant to reparameterization

Can analyze approximate natural gradient in terms of invariance to 
restricted classes of reparameterizations



Invariance to reparameterization
KFC is invariant to homogeneous pointwise affine transformations  
of the activations.

�

S� A�A��1
S�+1

ConvW� ConvW�+1

�

S� A�A��1 S�+1

ConvW†
�+1

ConvW†
�

S�U� + c� A�V� + d�

After an SGD update, the networks compute different functions

After a KFC update, they still compute the same function

I.e., consider the following equivalent networks with different parameterizations:



Invariance to reparameterization

KFC preconditioning is invariant to homogeneous pointwise affine
transformations of the activations. This includes:

Replacing logistic 
nonlinearity with tanh

Centering activations to 
zero mean, unit variance

Whitening the 
images in color space

New interpretation: K-FAC is doing exact natural gradient on a
different metric. The invariance properties follow almost 
immediately from this fact. (coming soon on arXiv)



Distributed second-order optimization using 
Kronecker-factored approximations

James
Martens

Jimmy
Ba



Background: distributed SGD

Suppose you have a cluster of GPUs. How can you use this to 
speed up training?

One common solution is synchronous stochastic gradient descent: 
have a bunch of worker nodes computing gradients on different  
subsets of the data.

This lets you efficiently compute SGD updates on large 
mini-batches, which reduces the variance of the updates.

But you quickly get diminishing returns as 
you add more workers, because curvature, 
rather than stochasticity, becomes the 
bottleneck.

gradients

parameter 
server



Distributed K-FAC

Because K-FAC accounts for curvature information, it ought to scale 
to a higher degree of parallelism, and continue to benefit from  
reduced variance updates.

We base our method off of synchronous SGD, and perform K-FAC’s 
additional computations on separate nodes.



Training GoogLeNet on ImageNet

Under review as a conference paper at ICLR 2017

Figure 3: Optimization performance of distributed K-FAC and SGD training GoogLeNet on Ima-
geNet. Dashed lines denote training curves and solid lines denote validation curves. bz indicates the
size of mini-batches. rbz indicates the size of chunks used to assemble the BN updates. Top row:
cross entropy loss and classification error v.s. the number of updates. Bottom row: cross entropy
loss and classification error vs wallclock time (in hours). All methods used 4 GPUs, with distributed
K-FAC using the 4-th GPU as a dedicated asynchronous stats worker.

(Russakovsky et al., 2015): AlexNet (Krizhevsky et al., 2012), GoogLeNet InceptionV1 (Szegedy
et al., 2014) and the 50-layer Residual network (He et al., 2015).

Despite having 1.2 million images in the ImageNet training set, a data pre-processing pipeline is
almost always used for training ImageNet that includes image jittering and aspect distortion. We
used a less extensive dataset augmentation/pre-processing pipeline than is typically used for Ima-
geNet, as the purpose of this paper is not to achieve state-of-the-art ImageNet results, but rather
to evaluate the optimization performance of distributed K-FAC. In particular, the dataset consists
of 224x224 images and during training the original images are first resized to 256x256 and then
randomly cropped back down to 224x224 before being fed to the network. Note that while it is
typically the case that validation error is higher than training error, this data pre-processing pipeline
for ImageNet creates an augmented training set that is more difficult than the undistorted validation
set and therefore the validation error is often lower than the training error during the first 90% of
training. This observation is consistent with previously published results (He et al., 2015).

In all our ImageNet experiments, we used the cheaper Kronecker factorization from Appendix A,
and the KL-based step sized selection method described in Section 5 with parameters c0 = 0.01
and ⇣ = 0.96. The SGD baselines use an exponential learning rate decay schedule with a decay
rate of 0.96. Decaying is applied after each half-epoch for distributed K-FAC and SGD+Batch
Normalization, and after every two epochs for plain SGD, which is consistent with the experimental
setup of Ioffe and Szegedy (2015).

6.2.1 GOOGLELENET AND BATCH NORMALIZATION

Batch Normalization (Ioffe and Szegedy, 2015) is a reparameterization of neural networks that can
make them easier to train with first-order methods, and has been successfully applied to large Ima-
geNet models. It can be thought of as a modification of the units of a neural network so that each
one centers and normalizes its own raw input over the current mini-batch (or subset thereof), after
which it applies a separate shift and scaling operation via its own local “bias” and “gain” parameters
(which are optimized). These shift and scaling operations can learn to effectively undo the center-
ing and normalization, thus preserving the class of functions that the network can compute. Batch
Normalization (BN) is closely related to centering techniques (Schraudolph, 1998), and likely helps
for the same reason that they do, which is that the alternative parameterization gives rise to loss
surfaces with more favorable curvature properties. The main difference between BN and traditional
centering is that BN makes the centering and normalization operations part of the model instead
of the optimization algorithm (and thus “backprops” through them when computing the gradient),
which helps stabilize the optimization.

Without any changes to the algorithm, distributed K-FAC can be used to train neural networks that
have BN layers. The weight-matrix gradient for such layers has the same structure as it does for
standard layers, and so Fisher blocks can be approximated using the same set of techniques. The
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(which are optimized). These shift and scaling operations can learn to effectively undo the center-
ing and normalization, thus preserving the class of functions that the network can compute. Batch
Normalization (BN) is closely related to centering techniques (Schraudolph, 1998), and likely helps
for the same reason that they do, which is that the alternative parameterization gives rise to loss
surfaces with more favorable curvature properties. The main difference between BN and traditional
centering is that BN makes the centering and normalization operations part of the model instead
of the optimization algorithm (and thus “backprops” through them when computing the gradient),
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have BN layers. The weight-matrix gradient for such layers has the same structure as it does for
standard layers, and so Fisher blocks can be approximated using the same set of techniques. The
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All methods used 4 GPUs

dashed: training (with distortions) 
solid: test

Similar results on AlexNet, VGGNet, ResNet



Scaling with mini-batch size

Under review as a conference paper at ICLR 2017

Figure 5: Optimization performance of distributed K-FAC and SGD training ResNet50 on Ima-
geNet. The dashed lines are the training curves and solid lines are the validation curves. bz indicates
the size of mini-batches. rbz indicates the size of chunks used to assemble the BN updates. Top
row: cross entropy loss and classification error v.s. the number of updates. Bottom row: cross en-
tropy loss and classification error v.s. wallclock time (in hours). All methods used 8 GPUs, with
distributed K-FAC using the 8-th GPU as a dedicated asynchronous stats worker.

Figure 6: The comparison of distributed K-FAC and SGD on per training case progress on training
loss and errors. The experiments were conducted using GoogLeNet with various mini-batch sizes.

6.2.3 VERY DEEP ARCHITECTURES (RESNETS)

In recent years very deep convolutional architectures have been successfully applied to ImageNet
classification. These networks are particularly challenging to train because the usual difficulties as-
sociated with deep learning are especially severe. Fortunately second-order optimization is perhaps
ideally suited to addressing these difficulties in a robust and principled way (Martens, 2010).

To investigate whether distributed K-FAC can scale to such architectures and provide useful ac-
celeration, we compared it to SGD+BN using the 50 layer ResNet architecture (He et al., 2015).
The results from this experiment are plotted in Fig. 5. They show that distributed K-FAC provides
significant speed-up during the early stages of training compared to SGD+BN.

6.2.4 MINI-BATCH SIZE SCALING PROPERTIES

In our final experiment we explored how well distributed K-FAC scales as additional parallel com-
puting resources become available. To do this we trained GoogLeNet with varying mini-batch sizes
of {256, 1024, 2048}, and measured per-training-case progress. Ideally, if extra gradient data is be-
ing used efficiently, one should expect the per-training-case progress to remain relatively constant
with respect to mini-batch size. The results from this experiment are plotted in Fig. 6, and show
that distributed K-FAC exhibits something close to this ideal behavior, while SGD+BN rapidly loses
data efficiency when moving beyond a mini-batch size of 256. These results suggest that distributed
K-FAC, more so than the SGD+BN baseline, is capable of speeding up training in proportion to the
amount of parallel computational resources used.
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GoogLeNet Performance as a function of # examples:

This suggests distributed K-FAC can be scaled to a 
higher degree of parallelism.
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Reinforcement Learning

Neural networks have recently seen key successes in 
reinforcement learning (i.e. deep RL)

Most of these networks are still being trained using SGD-like 
procedures. Can we apply second-order optimization?

human-level Atari 
(Mnih et al., 2015)

AlphaGo 
(Silver et al., 2016)



Reinforcement Learning

• We’d like to achieve sample efficient RL without sacrificing computational 
efficiency. 

• TRPO approximates the natural gradient using conjugate gradient, similarly to 
Hessian-free optimization 

• very efficient in terms of the number of parameter updates 
• but requires an expensive iterative procedure for each update 
• only uses curvature information from the current batch 

• applying K-FAC to advantage actor critic (A2C) 

• Fisher metric for actor network (same as prior work) 
• Gauss-Newton metric for critic network (i.e. Euclidean metric on values) 
• re-scale updates using trust region method, analogously to TRPO 

• approximate the KL using the Fisher metric



Reinforcement Learning

Atari games:



Reinforcement Learning

ACKTR A2C TRPO (10M)
Domain Human level Rewards Episode Rewards Episode Rewards Episode

BeamRider 5775.0 13581.4 3279 8148.1 8930 670.0 N/A
Breakout 31.8 735.7 4094 581.6 14464 14.7 N/A

Pong 9.3 20.9 904 19.9 4768 -1.20 N/A
Qbert 13455.0 21500.3 6422 15967.4 19168 971.8 N/A

Seaquest 20182.0 1776.0 N/A 1754.0 N/A 810.4 N/A
SpaceInvaders 1652.0 19723.0 14696 1757.2 N/A 465.1 N/A

Table 1: A2C, ACKTR results showing the last 100 average episode rewards attained after 50M timesteps, and
TRPO after 10M timesteps, the episode N , averaged over 2 random seeds. N denotes the first episode for which
the mean over N th game to (N + 100)th game episode rewards crosses the human performance level [18].
[[RBG: Fix the vertical lines.]][[YW: Do you know how?]]

Figure 3: Performance comparisons on 8 MuJoCo environments trained for 1 million timesteps (1 timestep
equals 4 frames). The shaded region denotes the standard deviation over 3 random seeds. [[RBG: Avoid
including redundant information (e.g. legend, axis labels) in all the figures.]]

5.1 Discrete Control

We first present results on the standard 6 Atari 2600 games to measure the performance improvement
obtained by ACKTR. The results on 6 Atari games trained for 10M number of timesteps are shown
in Figure 1, with comparison to A2C and TRPO. We see ACKTR significantly outperformed A2C in
terms of sample efficiency, i.e., speed of convergence per number of timesteps, by a significant margin
in all games. We find TRPO could only learn the game Seaquest and Pong in 10M timesteps out of
six games, and performed worse than A2C in terms of sample efficiency. We also present the mean
of rewards of the last 100 episodes in training for 50M timesteps, as well as the number of episodes
to achieve human performance [18] in Table 1. Notably, on the games BeamRider, Breakout, Pong,
and Qbert, A2C requires 2.7, 3, 5, 5.3, and 3.0 times more episodes than ACKTR to achieve human
performance. In addition, in the game of SpaceInvaders, one of the runs by A2C in SpaceInvader
failed to achieve the human performance, whereas ACKTR achieved 19723 on average, which is 12
times larger than the human performance (1652). On the games Breakout, QBert and BeamRider,
ACKTR achieved 26%, 35%, and 67% larger episode rewards compared to A2C.

We also evaluated ACKTR on the rest of the Atari games; see Appendix for full results. We
obtained consistent sample efficiency enhancement across the benchmarks. [[RBG: It doesn’t look
like a uniform improvement from the table. Say something more precise, e.g. we outperform
algorithm X on Y out of Z benchmarks.]] Remarkably, in the game of Atlantis, our agent (ACKTR)
quickly learned to obtain rewards of 2 million in 1.3 hours (600 episodes), as shown in Figure 2. It
took A2C 10 hours (6000 episodes) to reach the same performance.

6

MuJoCo (state space)



Reinforcement Learning

MuJoCo (pixels)

Figure 4: Performance comparisons on 3 MuJoCo environments from image observations trained for 40 million
timesteps (1 timestep equals 4 frames).

Adaptive Gauss-Newton? We then ask whether adaptive Gauss-Newton, i.e., keeping an estimate of
the standard deviation of the Bellman error as the standard deviation of the critic output distribution,
provides any improvement over vanilla Gauss-Newton (both defined in Section 3.1). The results are
shown in Figure 5 (c) and (d). We see that in the task Ant, the adaptive Gauss-Newton performed
better than Gauss-Newton, whereas in the task Reacher the sample efficiency with either norm was
the same.

Atari Mujoco
Timesteps/Second batchsize Timesteps/Second batchsize

ACKTR 821 640 734 2500
A2C 1039 80 737 2500

TRPO 163 512 871 25000
Table 3: Comparison of computational cost. The average timesteps per second over 6 Atari games and 8
MuJoCo tasks during training for each algorithms. ACKTR only increases at most 25% of computing time than
A2C. [[EM: Need to mention that episodes are processed sequentially in case of MuJoCo, where episode
length is at most 1000, whereas in case of Atari they are vectorized and processed in parallel.]] [[RBG: In-
dependent variables (e.g. batchsize) should go to the left of dependent variables (e.g. timesteps/second).]]
[[RBG: Do these values include simulation time? What do the numbers look like if we include only
computing time for the updates?]]

5.4 How does ACKTR compare with A2C in wall-clock time?

We compare how ACKTR compares to the baseline A2C, TRPO in terms of wall clock time. [[RBG:
Do these results include simulation time? Can we measure it both with and without simulation
time?]] Table 3 shows the average timesteps per second (TPS) over 6 Atari games and 8 MuJoCo
(from state space) environments. The result is obtained with the same experiment set up as previous
experiments. From the table we see that ACKTR only increases at most 25% of computing time,
demonstrating its practicality with large optimization benefits.

5.5 How do ACKTR and A2C perform with different batch sizes?

In a large-scale distributed learning setting, large batch size is used in optimization. Therefore in
such setting, it is much more preferable to use a method that can scale well with batch size. In this
section, we compare how ACKTR and the baseline A2C perform with respect to different batch sizes.
We experimented with batch sizes of 160 and 640 for ACKTR and 80 and 640 for A2C. Figure 5
(e) shows the rewards in number of timesteps. We find that ACKTR with larger batch size performs
as good as that with smaller batch size. However, with large batch size, A2C experience significant
degradation in terms of sample efficiency. This also corresponds to the observation in Figure 5 (f),
where we plotted the training curve in terms of number of updates. We see that there’s a substantial
increase of benefit when using larger batchsize with an ACKTR update than an A2C update. This
suggests there is potential for large speedups from ACKTR in a distributed setting, where one needs
to use large mini-batches, which matches the observation in [2].

6 Conclusion

In this work we proposed a sample efficient and computationally inexpensive trust region optimization
method for deep reinforcement learning. We use a recently proposed technique called K-FAC to
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Noisy natural gradient
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Two kinds of natural gradient

• We’ve covered two kinds of natural gradient in this course: 

• Natural gradient for point estimation (as in K-FAC) 

• Optimization variables: weights and biases 
• Objective: expected log-likelihood 
• Uses (approximate) Fisher matrix for the model’s predictive distribution 

• Natural gradient for variational Bayes (Hoffman et al., 2013) 

• Optimization variables: parameters of variational posterior 
• Objective: ELBO 
• Uses (exact) Fisher matrix for variational posterior

F = Cov
x�pdata,y�p(y|x;�)

�
� log p(y|x;�)

��

�

F = Cov
��q(�;�)

�
� log q(�;�)

��

�



Natural gradient for the ELBO

• Surprisingly, these two viewpoints are closely related. 

• Assume a multivariate Gaussian posterior 

• Gradients of the ELBO 

• Natural gradient updates (after a bunch of math): 

• Note: these are evaluated at     sampled from q

q(�) = N (�;µ,�)
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Natural gradient for the ELBO

• Related: Laplace approximation vs. variational Bayes 

• So it’s not too surprising that      should look something like H-1�

(Bishop, PRML)

true  
posterior

variational  
Bayes

Laplace

posterior density minus log density



Natural gradient for the ELBO

• Recall: under certain assumptions, the Fisher matrix (for point estimates) is 
approximately the Hessian of the negative log-likelihood: 

• The Hessian is approximately the GGN matrix if the prediction errors are small 

• The GNN matrix equals the Fisher if the output layer is the natural parameters of an 
exponential family 

• Recall: Graves (2011) approximated the stochastic gradients of the ELBO by 
replacing the log-likelihood Hessian with the Fisher. 

• Applying the Graves approximation, natural gradient SVI becomes natural 
gradient for the point estimate, with a moving average of F, and weight noise.
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for a spherical Gaussian prior, 
this term is a multiple of I, so it 

acts as a damping term.



Natural gradient for the ELBO

• A slight simplification of this algorithm: 

• Hence, both the weight updates and the Fisher matrix estimation are viewed as 
natural gradient on the same ELBO objective. 

• What if we plug in approximations to G? 

• Diagonal F 

• corresponds to a fully factorized Gaussian posterior, like Graves (2011) or Bayes By Backprop 
(Blundell et al., 2015) 

• update is like Adam with adaptive weight noise 

• K-FAC approximation 

• corresponds to a matrix-variate Gaussian posterior for each layer 
• captures posterior correlations between different weights 
• update is like K-FAC with correlated weight noise

µ� µ + �̃
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F +
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Preliminary Results: ELBO

BBB: Bayes by Backprop (Blundell et al., 2015) 
NG_FFG: natural gradient for fully factorized Gaussian posterior (same as BBB) 
NG_MVG: natural gradient for matrix-variate Gaussian model (i.e. noisy K-FAC)

NG_FFG performs about the same as BBB despite the Graves approximation.

NG_MVG achieves a higher ELBO because of its more flexible posterior, and also 
trains pretty quickly.



Preliminary Results: regression tasks



Conclusions

• Approximate natural gradient by fitting probabilistic models to the gradient 
computation 

• check modeling assumptions empirically 

• Invariant to most of the reparameterizations you actually care about 

• Low (e.g. 50%) overhead compared to SGD 

• Estimate curvature online using the entire dataset 

• Consistent 3x improvement on lots of kinds of networks
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Thank you!


