Scalable natural gradient using
probabilistic models of backprop

Roger Grosse

UNIVERSITY OF A VECTOR
¥ TORONTO INSTITUTE

Overview

* Overview of natural gradient and second-order optimization of neural nets

* Kronecker-Factored Approximate Curvature (K-FAC), an approximate natural
gradient optimizer which scales to large neural networks

* based on fitting a probabilistic graphical model to the gradient computation

* Current work: a variational Bayesian interpretation of K-FAC

Overview

Background material from a forthcoming Distill article.

Katherine Ye Matt Johnson Chris Olah

Overview

Most neural networks are still trained using variants of stochastic gradient

descent (SGD).

Variants: SGD with momentum, Adam, etc.

learning network’s
rate predictions

o

0—0—aVeLl(f(x,0),t)

/ T

parameters

(weights/biases) 1088 input
function

label

Backpropagation is a way of computing
the gradient, which is fed into an optimization
algorithm.

/
4
¢
-
i -~ \
\ ! - \\\
——_ heY N,
- S - ~ \
- = .
.‘ (Fe . W
\ \ | o N\
. \ \ & \‘ ™,
\ \ \ \ " N\,
5 \
\ \ \
\ \ \ N hY
\ b ™ \ \\ \
\ \ . \ \ \
\
\

stochastic gradient descent

Overview

SGD is a first-order optimization algorithm (only uses first derivatives)

First-order optimizers can perform badly when the curvature is badly
conditioned

bounce around a lot in high curvature directions

make slow progress in low curvature directions

P

original data

I o Y
0.49 0.18 | 0.79
-1.67 -0.46 | -4.43
0.22 037 | 1.12
1.76 -0.22 | 3.36

/’ \\

T
-1

Recap: nhormalization

multiply x1 by 5

add 5 to both

i ro 1

549 5.18 | 0.79
3.33 4.54 | -4.43
5.22 537 | 1.12

6.76

4.78

3.30

i Ty Yy
2.43 0.18 | 0.79
-8.33 -0.46 | -4.43
1.11 0.37 1.12
B.70 -0.22 | 3.36
3 N
‘ \
I

Recap: nhormalization

output has input has input has
unit $ unit min unit ft

1 J |

Yy =wixT1 + waTo + b

/ A\
/ t \
weight must weight must bias must
have unit $/min have unit $/ft have unit $

derivative has derivative has

weight has i weight has _
unit $/min un|t';n|n/$ unit $/ft U”'}ft/$
\v dh & dh
wp < W — o— Wo < Wy — OX—/—
] dwq] dws
so the learning so the learning
rate must have rate must have

unit $2/min2 unit $2/ft2

Recap: nhormalization

GD with
LR = 0.01 dh
pe:&::?r?ltﬁgfe wy — wy — 0.02 = = 2 wy — wy — 72
- d‘w1
--- dh e dn) = 60 fommmemeee-
dw, dw,
parameterize dh N N
in seconds — = 120 , Wy — Wy — 1.2
dwy GD with

LR = 0.01

Background: neural net optimization

These 2-D cartoons are misleading.

Millions of optimization variables, contours stretched by a factor of millions

When we train a network, we're trying to learn a function, but we
need to parameterize it in terms of weights and biases.

Mapping a manifold to a coordinate system distorts distances

Natural gradient. compute the gradient on the globe, not on the map

Recap: Rosenbrock Function

)

f(mh 332) = (a — L1y \/5(3}2 - zf))

)))))

= (v1,72)

h(yla y2) — L(yl’yl) — y% + y%'

Recap: steepest descent

It only we could do gradient descent on output space...

Recap: steepest descent

Steepest descent:

2" « arg min {Vh(wk)_(a: —) + AD(z, :z:k)},

/ \

linear dissimilarity
approximation measure
1 R 1 |
3’ Ar||® < e “Az' ANz < €
@ | | &
Euclidean D Another Mahalanobis

=> gradient descent (quadratic) metric

Recap: steepest descent

Take the quadratic approximation:

Recap: steepest descent

Steepest descent mirrors gradient descent in output space:

Output space

Even though “gradient descent on output space” has no analogue
for neural nets, this steepest descent insight does generalize!

Recap: Fisher metric and natural gradient

For fitting probability distributions (e.g. maximum likelihood), a natural
dissimilarity measure is KL divergence.

DkL(qllp) = Ez~qllog g(x) — log p(z))

The second-order Taylor approximation to KL divergence is the
Fisher information matrix:

ngKL = F = COVwNpQ (Ve 10gp9 (Qj))

Steepest ascent direction, called the natural gradient:

Voh = F'Vyh

Recap: Fisher metric and natural gradient

It you phrase your algorithm in terms of Fisher information,

it's invariant to reparameterization.

mean and variance

information form

unit o

N
N

777

i
‘\\\\\‘**R 1

00047
077

097
e i{;

%
==

Y

Background: natural gradient

When we train a neural net, we're learning a function. How do we define a
distance between functions?

Assume we have a dissimilarity metric d on the output space,

e.g. p(y1,y2) = ||y1 — y2H2
A

D f; — EJ:N f ’
(f.9) = Eannlo(f (2), g(x))] ’; % _Xf
Second-order Taylor approximation: i

1 |
D(fo, for) =~ 5(‘9/—9)TG0(9’—9) ’ \'\(]
G Oy ' 9%p Ay _
"7 00 0y? 00 7

This is the generalized Gauss-Newton matrix.

Background: natural gradient (Amari, 1998)

Many neural networks output a predictive distribution (e.g. over categories).

We can measure the “distance” between two networks in terms of the
average KL divergence between their predictive distributions 7 (¥ | X)

The Fisher matrix is the second-order Taylor approximation to this average

Fog 2 E [V%/DKL(TO’ (%) || re(y [x)) 0':9}

This equals the covariance of the
log-likelihood derivatives:

Fg = Cov x~paata (Vglogre(y|x))
y~re(y |x)

%(9’ —0)'F(6 —0)
~ E [Dkw(re’ || 7)]

Three optimization algorithms

Newton-Raphson Hesslan matrix
0 — 60— aH 'Vh(8) o h
I 00?
Generalized Gauss-Newton GGN matrix
_ 9., T 92]
0 —60—aG 'Vh(6) a_p |92 0°LOz
00 0z? 00
Natural gradient descent Fisher information matrix
0
0 — 0 — aF 'Vh(0) F = Cov (% logp(y!x)>

Are these related?

Three optimization algorithms

Newton-Raphson is the canonical second-order optimization algorithm.

1 0°h

It works very well for convex cost functions (as long as the number of
optimization variables isn’t too large.)

In a non-convex setting, it looks for critical points, which could be local
maxima or saddle points.

For neural nets, saddle points are common because of symmetries in the
weights.

Newton-Rhapson and GGN

“7~~_ image of the
mapping z = (i)

/
contours of /

~ h A

the loss L(z) ™. P) 4

1 \\ ///

- —— R —
z \\\ —///
2 b~_ _—
21 o

the sum of twe terms

/ \ The Hessian decomposes as

guadratic
approximation

toL

linear
approximalion —_

to f

linear
approximation

’

pd tol

guadratic

| approximation

tof

This is the GGN matnrx, which Inis term may have negative

is always positive semidefinite. eigenvalues. It vanishes it
z is at the optimum.

Newton-Rhapson and GGN

G is positive semidefinite as long as the loss function L(z) is convex, because it
IS a linear slice of a convex function.

This means GGN is guaranteed to give a descent direction — a very useful
property in non-convex optimization.

Vh()'AO = —aVh(0)' G V()
<0

The second term of the Hessian vanishes if the prediction errors are very small,
in which case G is a good approximation to H. But this might not happen, i.e. if
your model can't fit all the training data.
Z oL d2za
— 0z, d6°

-

vanishes if prediction
errors are small

Three optimization algorithms

Newton-Raphson Hesslan matrix
0 — 60— aH 'Vh(8) o h
00°
Generalized Gauss-Newton GGN matrix
_ 9., T 92]
0 —60—aG 'Vh(6) a_p |92 0°LOz
00 0z? 00
Natural gradient descent I Fisher information matrix

3,
0 — 0 — aF 'Vh(0) F = Cov (% logp(y!x)>

GGN and natural gradient

Rewrite the Fisher matrix:

F— Cov <8log%(0y\x; 9))

_ g | 91ogp(y|x; 0) dlog p(y|x; 0) ' | g |Ologp(y|x;0) | . [dloep(glx; 0) '
00 00 00
= 0 since y is sampled from
Chain rule (backprop): the model’s predictions
dlogp dz ' dlogp
00 00 Oz
Plugging this In:
- dlogp dlogp " & 0z " dlogp dlogp ' Iz
Y00 00 Y00 0z oz 00
& %T]E dlogp dlogp 0z
18 Y| Oz 0z 00

GGN and natural gradient

- dlogp dlogp " _n 0z " dlogp dlogp ' Iz
Y00 00 - Y00 Oz oz 006
_m %TE dlogp dlogp 0z
o0 Y| Oz 0z 00

Fisher matrix w.r.t. the
output layer

If the loss function L is negative log-likelihood for an exponential family
and the network’s outputs are the natural parameters, then the Fisher
matrix in the top layer is the same as the Hessian.

Examples: softmax-cross-entropy, squared error (i.e. Gaussian)

In this case, this expression reduces to the GGN matrix:

oz ' 92 Oz
00 0z? 00

G = Ex

Three optimization algorithms

So all three algorithms are related! This is why we call natural gradient a
“second-order optimizer.”

Newton-Raphson Hessian matrix
0 — 60— aH 'Vh(6) o Oh
I 00°
Generalized Gauss-Newton GGN matrix
_ 9., T 92]
0 — 60— aG 'Vh(6) a_p |92 0°L0z
00 0z? 00
Natural gradient descent I Fisher information matrix

3,
0 «— 60— aF 'Vh(0) F = Cov <% 1ogp(y\x)>

Background: natural gradient (Amari, 1998)

Problem: dimension of F is the number of trainable parameters
Modern networks can have tens of millions of parameters!

e.g. weight matrix between two 1000-unit layers has
1000 x 1000 = 1 million parameters

oL

Cannot store a dense 1 million x 1 million matrix, let alone compute F—la—‘9

Background: approximate second-order training

* diagonal methods

- e.g. Adagrad, RMSProp, Adam
- very little overhead, but sometimes not much better than SGD

* iterative methods

- €.g. Hessian-Free optimization (Martens, 2010); Byrd et al. (2011); TRPO (Schulman et
al., 2015)

- may require many iterations for each weight update
- only uses metric/curvature information from a single batch

* subspace-based methods

- e.9. Krylov subspace descent (Vinyals and Povey 2011); sum-of-functions (Sohl-
Dickstein et al., 2014)

- can be memory intensive

Optimizing neural networks using
Kronecker-factored approximate curvature

A Kronecker-factored Fisher matrix
for convolution layers

James
Martens

Probabilistic models of the gradient computation

Recall: F is the covariance matrix of the log-likelihood gradient

Fo = Cov x~paata (Ve log "“9(}’ ‘ X))

y~ro(y | x)

Samples from this distribution for a regression problem:

Log-likelihood contours and
gradients for data points
sampled from the model’s predictions

Average log-likelihood contour
and distribution of gradients

Probabilistic models of the gradient computation

Recall that Fmay be 1 million x 1 million or larger
Want a probabilistic model such that:

the distribution can be compactly represented

F ! can be efficiently computed

Strategy: impose conditional independence structure based on:

structure of the computation graph
empirical observations

Can make use of what we know about probabilistic
graphical models!

Natural gradient for classification networks

Forward pass

@ S; = W.,;a..,; 1

a; = ¢i(s;)

2)

Sample the targets
from the model’s
v predictions

Backward pass:

weight derivatives @
DW, = Ds;a; |, \@9 é

Backward pass:
activation derivatives

@ Dai = WTDS.g,+1
DS?; o Da.i : OII(S,,)

Natural gradient for classification networks

Forward pass: Backward pass:

oL oL
sy = Wyhy_1 + by o - WZ s
14 {+1
he = g(se) oL oL
9s; ~ oh, ~ 7

Approximate with a linear-Gaussian model:

h)=A/h, | +Be oL _ C, oL - Dye
8Sg 8Sg_|_1

e ~N(0.1) e ~N(0,1)

Kronecker-Factored Approximate Curvature (K-FAC)

Quality of approximate Fisher matrix on a very small network:

]
1
)
'
..
)
5
4
1
)
y
- y
i
0
“a
-
. |
1
)
4+
J.
1
|
i
)
]
|

‘-----J---.-- y

approximation

exact

Kronecker-Factored Approximate Curvature (K-FAC)

Assume a fully connected network
Impose probabilistic modeling assumptions:
e dependencies between different layers of the network
e (Option 1: chain graphical model. Principled, but complicated.

e (Option 2: full independence between layers. Simple to implement, and
works almost as well in practice.

- activations and activation gradients are independent

e we can show they are uncorrelated. Note: this depends on the
activations being sampled from the model’s predictions.

block tridiagonal block diagonal

Kronecker products

Kronecker product: anB e aipB
AR B =

afmlB amnB

R

vVecC operator:

veo| @l) =

Kronecker products

Matrix multiplication is a linear operation, so we should be
able to write it as a matrix-vector product.

Kronecker products let us do this.
\ o
o -
) o
(I® A)vee(X) / L
VOC(H’ﬁ EI H Ei) — VGC(E-)
vec(AX)

Kronecker products

The more general identity:

(A® B)vec(X) = vec(BXA")

Other convenient identities:
(A B)' =A" @ B'
(A B '=A"19 B!

Justification:

(A '@ B (A® B)vec(X) = (A" ®@ B~)vec(BXA")
—vec(B™'BXA"A™")
= vec(X)

Kronecker-Factored Approximate Curvature (K-FAC)

Entries of the Fisher matrix for one layer of a multilayer perceptron:

oL 0L
F(i,j),(i/’j,> -]E aww aw,,;/j/]
oL oL
— K -Cl,j a—SiCLj/ aSi,]
oL OL under the approximation that
=1 [ajaj’] E Os.: O activations and derivatives are
Lo independent
In vectorized form:
F=QT
2 = Cov(a)

oL
I' = COV (g)

Kronecker-Factored Approximate Curvature (K-FAC)

Under the approximation that layers are independent,
vyIy 0
fr—
0 v, I
W and I represent covariance statistics that are estimated during training.

Efficient computation of the approximate natural gradient:

vec (I‘l_l(VV—Vlh)\Ilal)

F~'Vh = :
vec (I‘Zl(VV-VL h)\IlZil)

Representation is comparable in size to the number of weights!
Only involves operations on matrices approximately the size of W

Small constant factor overhead (1.5x) compared with SGD

error (log scale)

10

Experiments

Deep autoencoders (wall clock)

MNIST

- Basalire (m = 500}
Blx-TriDiag K-FAC [m = ex0. sched.)
~ = ~ Blk-Diag <=FAC (m = exg. sched.!
- — Blk-TriDiag K-FAC [n2 moment., m - 6000) -

..............

-
-~
K-._
-

0

1000 2000

grror (log-scale)

10’

faces

------- Bageling [m = 500)

e BIK-TrIClag K-FAC (m = exp. sched))

= = = Blk-Dizg K-FAC (m = exp. sched)
Blk-~TriCiag K-FAC (nc mament., m = 5000

2000 4000 12000

Experiments

Deep autoencoders (iterations)

MNIST

------- Baseline (m = 500)
Blk-TriDiag K-FAC (m = exp. sched.)
— — — Blk-Diag K-FAC (m = exp. sched.)

Blk—TriDiag K-FAC (no moment., m = 6000)| |

L]
]
L
’
L
L]
[V
oy,
,,,,,
Ty,
|||||||||
g

||||||

1

iterations

10 |

faces

------- Baseline (m = 500)
Blk—TriDiag K-FAC (m = exp. sched.)
— — = Blk-Diag K-FAC (m = exp. sched.)

Blk-TriDiag K-FAC (no moment., m = 6000)

‘
'
'
1
'
1
[
L]
'

]
ty,
LN

1

iterations

Kronecker Factors for Convolution (KFC)

Can we extend this to convolutional networks?

Types of layers in conv nets:
Fully connected: already covered by K-FAC
Pooling: no parameters, so we don't need to worry about them
Normalization: few parameters; can fit a full covariance matrix

Convolution: this is what I'll focus on!

Sit = E W; 5,604 t+5 + bi,
5

af/i,t = P(84,¢)

Kronecker Factors for Convolution (KFC)

For tractability, we must make some modeling assumptions:

e activations and derivatives are independent (or jointly Gaussian)
®* NO between-layer correlations
e spatial homogeneity

- Implicitly assumed by conv nets

e spatially uncorrelated derivatives

Under these assumptions, we derive the same Kronecker-tfactorized

approximation and update rules as in the fully connected case.

Kronecker Factors for Convolution (KFC)

Are the error derivatives actually spatially uncorrelated?

~

-
=5
-
r
.
wn

Spatial autocorrelations Spatial autocorrelations
of error derivatives of activations

CMA-10 sy 1 CIPAR-1D ayer 2 CQIFAR-10 ayer 3
FAF-10Ia

AR-10myer 1 CI

Experiments

conv nets (wall clock)

CIFAR-10 (neg. log-likelihood)

— S5GD
— KFC
test
tramlng
0.04 5 10 15 20 25 30

wall clock time {minutes)

SVHN (neg. log-likelihood)

0.5

0.4
0.3

0.2¢

MEZOW 3X frainin
O.l I W i ", Nlld_\’ Wq\h‘p\‘ J,} “ ., u . a g
e — — w\w
0.0 i 1 i
0 50 100 150 200 250

wall clock time (minutes)

Invariance to reparameterization

One justification of (exact) natural gradient descent
IS that it’s invariant to reparameterization

Can analyze approximate natural gradient in terms of invariance to
restricted classes of reparameterizations

Invariance to reparameterization

KFC is invariant to homogeneous pointwise affine transformations
of the activations.

|.e., consider the following equivalent networks with different parameterizations:

Convwy, 0 Convw,, ,
> —_ >

Sg AE SE

+1
Ay

COHVWT SeUe + ¢ 0 AV +dyg COHVWT

V4 £+1
> | —_— — > >
Aé—l Sg Ag

After an SGD update, the networks compute different functions

After a KFC update, they still compute the same function

Sei1

Invariance to reparameterization

KFC preconditioning is invariant to homogeneous pointwise affine
transformations of the activations. This includes:

)
ey
;‘? . “ v .
— ///;
Replacing logistic Centering activations to Whitening the
nonlinearity with tanh Zero mean, unit variance Images in color space

New interpretation: K-FAC is doing exact natural gradient on a
different metric. The invariance properties follow almost
immediately from this fact. (coming soon on arXiv)

Distributed second-order optimization using
Kronecker-factored approximations

James
Martens

Background: distributed SGD

Suppose you have a cluster of GPUs. How can you use this to
speed up training?

One common solution is synchronous stochastic gradient descent:
have a bunch of worker nodes computing gradients on different

subsets of the data. -
1 parameter

server

This lets you efficiently compute SGD updates on large
mini-batches, which reduces the variance of the updates.

But you quickly get diminishing returns as
you add more workers, because curvature,
rather than stochasticity, becomes the

bottleneck.

gradients

Distributed K-FAC

Because K-FAC accounts for curvature information, it ought to scale
to a higher degree of parallelism, and continue to benefit from

reduced variance updates.

We base our method off of synchronous SGD, and perform K-FAC’s
additional computations on separate nodes.

parameters parameter compute
server INVerses
-~
E:AAT]_IQ;;.'E['DS'DZ]"I IE[.A.AT]_I
E[D,DT] !
Ow E[AAT]
E[D,DT]
gradient gradient gradient stats
worker worker worker worker
A A A A

.
llllllllllllllllllllllllllllllll

Training GoogleNet on ImageNet

— SGD+BN bz256 rbz128|
All methods used 4 GPUs SGD+BN bz256 rbz32 |
— dist.K-FAC bz256
— dist.K-FAC+BN bz256
0.50
0.45F N\ SN\ s AP B LRE
L 040 S VAT W I SRS ESPPR
LE ; : : N) ;
035— ~s -'--a-\---A- _.
0.30f b T T
0.25 | | | | | | |
0 13.9 27.8 41.7 55.6 69.4 83.3 97.2

h
ours dashed: training (with distortions)

solid: test

Similar results on AlexNet, VGGNet, ResNet

Scaling with mini-batch size

GooglLeNet Performance as a function of # examples:

— SGD+BN bz1024 ||
SGD+BN bz2048
SGD+BN bz256 ||

— dist.K-FAC bz1024

— dist.K-FAC bz2048

2.4

2.2

2.0 dist.K-FAC bz256 ||
2 ;
S
B LB QU R TN T
w
S
O LB T e M

171 S A WA S
IS T S I
Lo ; ; ; ;

0 10 20 30 40 50

#example consumed x 1e+06

This suggests distributed K-FAC can be scaled to a
higher degree of parallelism.

Scalable trust-region method for deep
reinforcement learning using Kronecker-
factored approximation

Mansimov

Reinforcement Learning

Neural networks have recently seen key successes in
reinforcement learning (i.e. deep RL)

AlphaGo

human-level Atari AlphaGo
(Mnih et al., 2015) (Silver et al., 2016)

Most of these networks are still being trained using SGD-like
procedures. Can we apply second-order optimization?

Reinforcement Learning

* We'd like to achieve sample efficient RL without sacrificing computational
efficiency.

* TRPO approximates the natural gradient using conjugate gradient, similarly to
Hessian-free optimization

e very efficient in terms of the number of parameter updates
* but requires an expensive iterative procedure for each update

e only uses curvature information from the current batch

* applying K-FAC to advantage actor critic (A2C)

* Fisher metric for actor network (same as prior work)
e Gauss-Newton metric for critic network (i.e. Euclidean metric on values)
* re-scale updates using trust region method, analogously to TRPO

* approximate the KL using the Fisher metric

Reinforcement Learning

Atari games:

7000
6000
o 5000
£ 4000
o
o
§ 2000
9
o
w2000

1000

BeamRider
—— ACKTR

- "-."
- IS i PO\
.\'M-—.—%WW

aM 6M 10M
Number ot limesteps

1M 2M 8M

Qbert

~ ACKTR
A2C

am 6M
Number of Timesteps

Breakout
— ACKTR
A2C W
400
TRPO AN"/
8 M
z 200 / Y,
o Yy
§ 200 W
@ i
& _.J."
100 M
e A
o e B o
1M 2M aM 6M 8M 10M
Number of limesteps
1800 Seaquest
- ACKTR AT aa e aVarng Lot
1600 A2C
TRPO
1400
%
§ 1200 It
% 1000 I
v [
[+] p— - ——
2 300 s _" I/-'\/”w
& /-/*"/\‘ W v-/\\‘ ANV
500 ‘ r NM\ v/\. fw
s00 /" W
1M 2M aMm 6M 8M 10M
Number of Timesteps

Episode Rewards

Eplsode Rewards

N
(=]

-
>

o

|
[
[~2

-204~

1000

800

600

rong)
e ACKTR L PPNV W“
IV Pt
TRPO /
||‘ ‘ll
N | / A
v
r\m\f\’\”
j ,/‘*’ N A
IM 2M 4aM 6M 8M 10M
Number of limesteps
Spzcelnvaders
e ACKTR
A2C
TRPO
n .’n A n
n \V'J I,Q n MY
\l I\-‘ f
" M’*’“ %'“‘W“’W’) M”M\
A WIWWY
1M 2M am 6M 8M 10M

Number of Timestaps

Reinforcement Learning

MudoCo (state space

InvertedPendulum

120
1000
T 800
©
2
&
5 600
kel
o
R
& 400
| —— ACKTR
200 / A2C
s — TRPO
0 200K 400K 600K 800K M
Number of Timesteps
60 Swimmer
40
e
2 20
[
o
()
©
2 0
o
w
-0 — ACKTR
A2C
— TRPO
—4 200K 400K 600K 800K M

Number of Timesteps

InvertedDoublePendulum

1000
8000
2
£ 6000
[
o
[
el
@ 4000
o
w
2000 — ACKTR
A2C
— TRPO
0 200K 400K 600K 800K ™
Number of Timesteps
140 Walker2d
1200
1000
2
g 800
&
o 600
©
2
2 400
w
200 — ACKTR
0 A2C
— TRPO
-20
200K 400K 600K 800K M

Number of Timesteps

Reacher

0
T
©
2
[}
o
[
kel
2
a
w [
P — ACKTR
—60 A2C
— TRPO
-7 200K 400K 600K 800K M
Number of Timesteps
3000 HalfCheetah
2500
2000
B
©
£ 1500
o
()
S 1000
wn
3
“ 500
— ACKTR
0 A2C
| — TRPO
=30 200K 400K 600K 800K 1Y

Number of Timesteps

4000 Hopper
3500
3000
e
fgv 2500
&
o 2000
he)
2
‘3 1500
w
1000 — ACKTR
500 A2C
o — TRPO
e
200K 400K 600K 800K 1M
Number of Timesteps
150 Ant
1000
e 500
©
2
&
P 0
el
(=]
@
& -500
— ACKTR
—1000 A2C
— TRPO
~150 200K 400K 600K 800K 1M

Number of Timesteps

Episode Reward

MudoCo (pixels)

Reinforcement Learning

Reacher (pixels)

-12

-14

ACKTR| |

A2C

10M

20M
Number of Timesteps

40M

Episode Reward

Walker2d (pixels)

2000
1500
1000
500
ACKTR
A2C
0 10M 20M 40M

Number of Timesteps

Episode Reward

3000

HalfCheetah (pixels)

2500

2000

1500

1000

500

—500

—1000

ACKTR

A2C

10M

20M
Number of Timesteps

40M

Noisy natural gradient
as variational inference

w/ Guodong Zhang and Shengyang Sun

Two kinds of natural gradient

* We've covered two kinds of natural gradient in this course:

« Natural gradient for point estimation (as in K-FAC)

* Optimization variables: weights and biases
* Objective: expected log-likelihood

* Uses (approximate) Fisher matrix for the model’s predictive distribution

P Cov (mogp(y\X; 9))

Xdiataapr(y|X;6) 80

« Natural gradient for variational Bayes (Hoffman et al., 2013)

* Optimization variables: parameters of variational posterior
* Objective: ELBO

* Uses (exact) Fisher matrix for variational posterior

0log q(0; </5))
ofoy

F= Cov (
0~q(0;9)

Natural gradient for the ELBO

* Surprisingly, these two viewpoints are closely related.
« Assume a multivariate Gaussian posterior ¢(6) = N (6; u,)

e Gradients of the ELBO
VuF =E[Velogp(D|6) + Ve logp(6)]

1 1
VsF =k Vo logp(D|0) + Vglogp(0)] + 52—1

* Natural gradient updates (after a bunch of math):

stochastic Newton-Raphson

_ 1
pn— p+ alA ! [VQ logp(y\x; 9) =+ Nve logp(H)] update for weights

1
N

of the Hessian

A — (1 — é) A-0 [V?g log p(y|x;) +

~ vg logp(@)] exponential moving average

* Note: these are evaluated at 8 sampled from @

Natural gradient for the ELBO

* Related: Laplace approximation vs. variational Bayes

* S0 it's not too surprising that A should look something like H-

posterior density

0.8}

0.6}

0.4

0.2}

Laplace

/' \ variational
\. | Bayes

-1 0 1 2 3

minus log density

(Bishop, PRML)

Natural gradient for the ELBO

* Recall: under certain assumptions, the Fisher matrix (for point estimates) is
approximately the Hessian of the negative log-likelihood:

* The Hessian is approximately the GGN matrix if the prediction errors are small

 The GNN matrix equals the Fisher if the output layer is the natural parameters of an
exponential family

* Recall: Graves (2011) approximated the stochastic gradients of the ELBO by
replacing the log-likelihood Hessian with the Fisher.

* Applying the Graves approximation, natural gradient SVI becomes natural
gradient for the point estimate, with a moving average of F, and weight noise.

_ 1
po— p+aA™! [Vg log p(y|x; 0) + NV@ log p(0)
1
N

for a spherical Gaussian prior,
this term is a multiple of I, so it
acts as a damping term.

Vi log p(0)

A — (1 — %) A-p([Ve log p(y|x; 0) Ve log p(ylx;0) " +

Natural gradient for the ELBO

* A slight simplification of this algorithm:

1\ 1
o i+ (F + N—n1> [Vg log p(y|x;0) — N—ne

F — (1—-pB)F + ng log p(y|x; 0)Ve log p(y|x; H)T

* Hence, both the weight updates and the Fisher matrix estimation are viewed as
natural gradient on the same ELBO objective.

« What if we plug in approximations to G7

e Diagonal F

e corresponds to a fully factorized Gaussian posterior, like Graves (2011) or Bayes By Backprop
(Blundell et al., 2015)

« update is like Adam with adaptive weight noise

» K-FAC approximation

e corresponds to a matrix-variate Gaussian posterior for each layer
» captures posterior correlations between different weights

« update is like K-FAC with correlated weight noise

Preliminary Results: ELBO

BBB: Bayes by Backprop (Blundell et al., 2015)
NG_FFG: natural gradient for fully factorized Gaussian posterior (same as BBB)
NG_MVG: natural gradient for matrix-variate Gaussian model (i.e. noisy K-FAC)

e
=
3o
o
o
) W ma— At bl O A A AL I v e Y
S Mvvﬂ““’”“"' v
M =] 44
m A
% 16 -~ BBB
= '/ —— NG_FFG
m A
© — NG MVG
}_ B —

0 20200 20000 30000 20000 50020 50000 73000 00300 Q0030 100C20
c
e Wwﬂwh
(o8]
£ a«
A4 b . a"‘ '
O
O
3 1.
w
o ni — BB
c
‘T 00 — NG_FFG
0 o1 — NG MVG
P —
) 10030 inoce 30020 40000 50670 1200 70000 87000 20007 - 07200

lterations

NG_FFG performs about the same as BBB despite the Graves approximation.

NG_MVG achieves a higher ELBO because of its more flexible posterior, and also

trains pretty quickly.

Preliminary Results: regression tasks

Test RMSE Test log-likelihood

Datasct BBB NG_FFG NG_MVG BBB NG_FFG NG_MVG

Boston 2517 10,022 239610016 2296 0.029 -2.50010.004 -243010.004 -2.336 0.005
Concrete 5.770L0.066 591610053 5173_.0.070 -3.169L0.011 -3.166L0.009 -3.073_0.014
Energy 04990019 0.749£0.130 0.438=0.003 -1.552=0.006 -1.601=0.062 -1.411=0.002
Kin¥nm 0.079x0.001 0.078£0.001 0.076=0.000 1.118+0.004 1.130£0.008 1.151+0.006
Naval 0.000=0.000 0.000L£0.000 0.000=0.000 6.4311£0.082 6.435L£0.065 7.182L0.057
Pow. Plant 4.2244-0.007 4.2204+0.005 4.085—0.006 -2851+0.001 -2851+0.002 -2.8I18—0.002
Protein 4.390+0.009 4.3974+0.009 4.058—0.006 -2.900-+0.002 -2.900+0.002 -2.820—0.002
Wine 0.639L0.002 0.637L0001 0.634_0.001 -0.971L0.003 -0968L0.001 -0.961_.0.001
Yacht 098310055 122110069 0827_.0.017 -2380L0.004 -239310007 -2.274_.0.003
Year 9.076ENA 9.078ENA 8.885+NA -3.614=NA -3.620£NA -3.5951+=NA

Conclusions

* Approximate natural gradient by fitting probabilistic models to the gradient
computation

* check modeling assumptions empirically
* [nvariant to most of the reparameterizations you actually care about
* Low (e.g. 50%) overhead compared to SGD
* Estimate curvature online using the entire dataset

* Consistent 3x improvement on lots of kinds of networks

O 4

Ly
/
Thank you!
/

