
Explaining and
Harnessing Adversarial
Examples
Ian J. Goodfellow, Jonathon Shlens, &
Christian Szegedy

Presented by - Kawin Ethayarajh and
Abhishek Tiwari

Introduction
- adversarial examples: Inputs formed by applying small but worst-case

perturbations to examples from the dataset, such that the perturbed input
results in the model outputting an incorrect answer with high confidence.

Motivation
- a wide variety of models with different architectures trained on different

subsets of the training data misclassify the same adversarial example
- causes of adversarial examples a mystery: Extreme non-linearity of NNs?

Insufficient model averaging? Insufficient regularization?
- suggests that classifiers based on most ML techniques are not learning

the true underlying concepts that determine the correct output label
- models do well on naturally occurring data, but fail for points x where P(x) is

very low

- potential for use in adversarial training

- Let adversarial input ᬕ’ = ᬕ + η for some input ᬕ.
- For a classifier F, we expect F(ᬕ) = F(ᬕ’) if ||η||∞

< ᶗ, for ᶗ small enough to be
discarded by the sensor or data storage.

- Dot product of weight ᬔ and an adversarial example ᬕ’ is ᬔTᬕ + ᬔTᶗ (i.e.,
activation grows by ᬔTᶗ).

- Put another way, activation grows by ᶗmn, where n is the dimensionality of ᬔ,
and m is the average magnitude of a weight.

- A simple linear model can have adversarial examples if its input has
sufficient dimensionality.

Linear Explanation of Adv. Examples

- LSTMs, ReLUS, and maxout networks are all designed to behave in highly
linear ways, so that they are easier to optimize.

- More nonlinear models such as sigmoid networks are tuned to spend most of
their time in the non-saturating, more linear regime for the same reason.

- Fast Gradient Sign Method (FGSM): η = ᶗ sign(∇
x
᫮(ᶚ,ᭉ,ᬖ))

- error rates on MNIST: 99.9% on shallow softmax with 79.3% avg. confidence,
89.4% on maxout with an avg. confidence of 97.6%

- High error rates support the theory that the effectiveness of adversarial examples
can be ascribed to model linearity.

Linear Perturbation of Non-Linear Models

- For logistic regression, FGSM is the optimal perturbation method; exact,
not just an approximation (increases error rate to 99% on MNIST).

- Adversarial training of logistic regression involves minimizing (where ζ is
log(1 + exp(z))):

Eᭉ,ᬖ ζ (ᬖ (ᶗ ||ᬔ||1 − ᬔTᬕ − b)

- Similar to L1 regularization, but less punitive; penalty effectively
disappears when ζ is saturated.

- When model underfits, adversarial training will simply worsen underfitting.

Adversarial Training of Linear Models

(a) Weights of a logistic regression model trained on MNIST. (b) Sign of those weights (optimal

perturbation). (c) MNIST 3’s and 7’s. (d) FGSM adversarial examples with ᶗ = 0.25 → 99% error rate.

Adversarial Training of Linear Models (2)

•

•

•

•

•

•

…

•

•

•

…

•
•

…
•

•

•

•

•

•

•

•

•

•

•

- Adversarial examples can be explained as a result of high-dimensional dot
products; result of too much linearity, not non-linearity.

- Direction of perturbation, not specific point in space, matters most.

- Generalization of adversarial attacks due to different models learning
similar functions for a given task.

- FGSM is a fast and effective way of generating adversarial examples.
- Adversarial training result in regularization (even more than dropout).
- Linear models lack capacity to resist adversarial perturbation; only

structured with a hidden layer can be trained to do so.

Summary

Adversarial Examples for
Generative Models

Jernej Kos, Ian Fischer, Dawn Song
Presenters: Atef Chaudhury, Brandon Zhao, Kevin Shen

Overview

We have already seen from past papers that discriminative models suffer from
adversarial examples

This paper looks at how generative models are also susceptible to adversarial
examples

Rest of Presentation

1. Quick review of VAEs
2. Motivating scenario for an adversarial attack on generative models
3. The three attack methods described by the paper, and their underlying

mechanism
4. The results of these attacks
5. Areas for future work

Quick Review of Variational Autoencoders
VAEs sample a latent space to generate examples from a distribution of interest

● Learn an encoder function (typically an NN) to map high-dimensional input x to low-dimensional
latent space z

● Learn a decoder function (also an NN) to map back from latent space to high-dimensional output

Motivating Scenario
VAEs can be used as compressed communication channels

What if an adversary tricks the sender into transmitting an input that resembles
something entirely different once it is reconstructed

Attacks

Red: Classifier Attack
Yellow: Latent Attack

Blue: VAE Attack

Classifier Attack

Latent Attack

VAE Attack

Image or class level Class level Image level

Most effective attacks Reconstructions are
bad

Computationally
expensive

Adversary needs
labels for images

Evaluation Setup
● A separate classifier is used to evaluate the accuracy of the reconstructions.
● A reconstruction feedback mechanism (i.e. pass the reconstructed image

back through the encoder) is used to improve the accuracy of this classifier.

Based on the classifier output, two metrics were computed

1) attack success rate ignoring targeting

2) attack success rate including targeting

Evaluation Metrics

Metrics Evaluation for MNIST Classifier attack

MNIST: Successful Latent Attack

Adversarial Examples Adversarial Reconstructions

CelebA: Successful Latent Attack

Adversarial Examples Adversarial Reconstruction

SVHN: Failed Lvae Attack

Reconstructions from Lvae Attack Reconstructions from Latent Attack

Future works and Relevant Papers
1. Attacks on natural image dataset such as CIFAR-10 or Imagenet
2. Defence and robustification against these attacks

MagNet: a Two-Pronged Defense against Adversarial Examples

- They use VAEs to detect and fix adversarial examples for a classifier (which may not work if
you know how to attack the VAEs in the first place)

Adversarial Images for Variational Autoencoders

- Original VAE attack paper

Appendix

MNIST: Failed FGS optimization

VAE Reconstructions VAE-GAN Reconstructions

Possible hypothesis for why adversarial attacks work
- (although this paper won’t explore them, good to keep in mind)
- Posteriors of training examples tend to clump together, why do adversarial

examples work?
- Insufficient posterior: gaps that are not being filled by the posteriors of different data points, q

is a poor approximation to posterior
- Interpolation between the means of the posteriors of two datapoints is adversarial
- Adversary exploits the architecture of the neural network (i.e. it’s the sample problem as the

classifier)

Additional details
- In all attacks, they train with mean latent z from encoder, they do not sample
- they blame bad reconstruction for y-attack on classifier inaccuracy but it’s

probably because adversarial z’s in classifier’s input space do not correspond
to actual images

Evaluation Criteria

1. Loss Type: Classifier versus LVAE versus Latent

2. Optimization type: L2 Optimization versus FGS

Potentially relevant papers
Cited

- Adversarial Images for Variational Autoencoders
- They did a subset of what this paper did, results are not very important

Cited by

- MagNet: a Two-Pronged Defense against Adversarial Examples
- They use VAEs to detect and fix adversarial examples for a classifier (which may not work if

you know how to attack the VAEs in the first place)

Limitations of Deep Learning
in Adversarial Settings

Paper by: Nicolas Papernot, Patrick McDaniel, Somesh Jha,
Matt Fredrikson, Z. Berkay Celik, Ananthram Swami

Presented by: Ramin Hamedi and Matthew MacKay

Presentation Summary

1. Threat model taxonomy
2. Generic algorithm to construct adversarial examples
3. Application of algorithm to MNIST
4. Metrics to evaluate attack’s effectiveness

Threat Model Taxonomy

● Adversary seeks to provide an input to a deep learning classifier causing
undesired behavior

● Adversarial Goals:
○ What behavior is adversary trying to elicit?

● Adversarial Capabilities:
○ What information can adversary use to attack our system?

Adversarial Goals

1. Confidence Reduction: reduce output confidence classification

Adversarial Goals

2. Misclassification: perturb existing image to classify as any incorrect class

Adversarial Goals

3. Targeted misclassification: produce inputs classified as target class

Adversarial Goals

4. Source/target misclassification: perturb existing image to classify as target class

Adversarial Goals (Summary)

1. Confidence Reduction: reduce output confidence classification
2. Misclassification: perturb existing image to classify as any incorrect class
3. Targeted misclassification: produce inputs classified as target class
4. Source/target misclassification: perturb existing image to classify as target class

Increasing
complexity

Adversarial Capabilities (Summary)

● What information can adversary use to attack our system?
1. Training data and network architecture
2. Network architecture
3. Training data
4. Oracle (can see outputs from supplied inputs)
5. Samples (have inputs and outputs from network but cannot choose inputs)

Decreasing
knowledge

Threat Model Taxonomy (Summary)

● Adversarial Goals:
○ What behavior is adversary trying

to elicit?
● Adversarial Capabilities:

○ What information can adversary
use to attack our system?

● In this paper:
○ Goal: Source/target

misclassification
○ Capability: Architecture

Formal Problem Definition

● Given a trained neural network such that

● Let

Formal Problem Definition

● Also given: training example and a target label
● Goal: Find s.t. and similar to
● More formally: find satisfying
● Then: set

+ =

Summary of Basic Algorithm

1. Compute the Jacobian matrix of evaluated at input
2. Use Jacobian to find which features of input should be perturbed
3. Modify by perturbing the features found in step 2
4. Repeat while not misclassified and perturbation still small

Step 1: Compute Jacobian

● Recall
● The Jacobian is defined to be a matrix such that:

● Note: this is not equivalent to the derivative of the loss function!
● For explicit computation, see paper. Otherwise, just use auto-diff software

Step 2: Construct Adversarial Saliency Maps

● Set . Define an adversarial saliency map by:

● High value of saliency map correspond to input features that, if increased, will:
○ Increase probability of target class
○ Decrease probability of other classes

Question: Why not probabilities?

● We could have defined to be output after softmax, not before
● However, doing so leads to extreme derivative values due to squashing

needed to ensure probabilities add to 1
● This reduces quality of information about how inputs influence network

behavior

● Binary classification example: sigmoid
derivatives vanish in the tails

Saliency Map Example

Step 3: Modify input

● Choose
● Change current input by setting
● is problem specific perturbation amount (later will discuss how to set)

BEFORE AFTER

Application of Approach to MNIST

● Assume attacker has access to trained model
● In this case: LeNet architecture trained on 60000 MNIST samples
● Objective: Change a limited number of pixels on input , originally correctly

classified so network misclassifies as target class

● Set perturbation amount to 1 (turning pixel completely on) or -1 (turning
completely off)
○ If an intermediate value, more pixels need to be changed to misclassify

● Once a pixel reaches zero or one, we need to stop changing them
○ Keep track of candidate set of pixels to perturb on each iteration

● Very few individual pixels have saliency map value greater than 0
○ Instead consider two pixels at a time (see paper for changed saliency

map)

Practical Considerations

● Quantify maximum distortion by allowable percentage of modified pixels
(e.g.)

● The maximum number of iterations will be:

Practical Considerations (continued)

● Note: two is in denominator because we are tweaking two pixels per iteration

Formal Algorithm for MNIST

Input:

1. Set , ,,

2. while and and :

3. Compute Jacobian matrix

4. Compute modified saliency map for two pixels

5. Find two “best” pixels and remove them from

6. Set

7. Increment

8. Return

Results for Empty Input

Samples created by increasing intensity

Success Rate and Distortion

● Success rate: percentage of adversarial samples that were successfully
classified by the DNN as the adversarial target class

● Distortion: percentage of pixels modified in the legitimate sample to obtain the
adversarial sample

● Two distortion values computed: one taking into account all samples and a
second one only taking into account successful samples

Results

● Table shows results for increasing pixel features

Source-Target Pair Metrics

Source

Target

Source

Target

Hardness Matrix

● Can we quantify how hard it is to convert different source-target class pairs?
● Define:

○ : success rate
○ : average distortion required to convert class s to class t with success rate

 ● In practice: obtain pairs for specific maximum distortions
(average over 9000 adversarial samples)

● Then estimate as:

Adversarial Distance

● Define : the average number of zero elements in the adversarial
saliency map of computed during the first crafting iteration

 ● Closer adversarial distance is to 1, more likely input will be harder to
misclassify

● Metric of robustness for the network:

Adversarial distance

● Adversarial distance is a good proxy for difficult-to-evaluate
hardness

Source

Target

Source

Target

Takeaways

Algorithm for Adversarial Examples
1. Small input variations can lead to extreme output variations
2. Not all regions of input are conducive to adversarial examples
3. Use of Jacobian can help find these regions

Adversary Taxonomy
1. Can model multiple levels of adversarial capabilities/knowledge
2. Adversaries can have different goals- what unintended behavior does

adversary want to elicit?

Results
1. Some inputs are easier to corrupt than others
2. Some source-target classes are easier to corrupt than others
3. Saliency maps can help identify how vulnerable network is

Thanks!

Adversarial	Examples,	Uncertainty,	and	
Transfer

Testing	Robustness	in	Gaussian	Process	
Hybrid

Deep	Networks

John	Bradshaw,	Alexander	G.	de	G.	Matthews,	Zoubin Ghahramani

Presented	by:

Pashootan	Vaezipoor	and	Sylvester	Chiang

Introduction
• Some	issues	with	plain	DNNs:
• Do	not	capture	their	own	uncertainties

• Important	in	Bayesian	Optimization,	Active	Learning,	…
• Vulnerable	to	adversarial	examples

• Important	in	security	sensitive	and	safety	regimes

• Models	with	good	uncertainty	may	be	able	to	
prevent	some	Adversarial	examples.	

• So	let’s	make	DNNs	Bayesian	and	account	for	
uncertainty	in	the	weights.

• Bayesian	non-parametrics such	as	Gaussian	
Process (GP)	can	offer	good	probability	estimates

• In	this	paper	they	use	GP	hybrid	Deep	Model	
GPDNN

Pictures	from	Yarin Gal	 et	al.	“Dropout	as	a	Bayesian	Approximation:	
Representing	Model	Uncertainty	in	Deep	Learning”

Outline	of	the	paper

• Background
• Model	architecture

• Results
• Classification	Accuracy
• Adversarial	Robustness

• Fast	Gradient	Sign	Method	(FGSM)

• L2	Optimization	Attack	of	Carlini and	Wagner

• Transfer	Testing

Background

• GPs	express	the	distribution	over	latent	variables	with	respect	to	the	
inputs	x	as	a	Gaussian	distribution:	

• And	the	learning	of	the	parameters	of	k	amounts	to	optimization	of	
the	following	log	marginal	likelihood:

In this paper we explore using these GP hybrid deep models, GPDNNs. We first describe in the next section
the structure of these GPDNN models as well as indicating how they can be trained end-to-end in a scalable
manner using variational methods, GPflow [39] and TensorFlow [2]. We then perform three general sets of
experiments:

• Classification: here we use these models for image classification and in agreement with the general
findings of Wilson et al. [61] find that these models give good accuracy scores even when extended to
work on far deeper base networks or in low data regimes.

• Adversarial robustness: we then extend what was previously known about GPDNNs to show that
they appear to be more robust to adversarial examples.

• Transfer testing: finally we develop a testing framework for transferring models to new domains and
we find evidence that GPDNNs are more robust when used on challenging new domains, as shown by
smaller decreases in log likelihood and more uncertain output classes.

1.1 Background
Gaussian processes [51] are flexible Bayesian nonparametric models where the similarity between data points
is encoded by a kernel function. There are two key problems, however, when working with GPs in complicated
domains such as those of images. The first problem is scale; regular GPs are limited to datasets of a few
thousand data points. Image datasets, even the small ones, are much larger than this [32, 36]. The second
problem is the expressiveness of the kernel, as simple kernels, such as the RBF kernel, cannot build good
enough representations to work as e�ectively with images as DNNs.
In the remainder of this section we will describe the ways people have overcome these problems. We then
summarise the structure of the GPDNN model that we will use in the rest of this paper.

Scaling GPs. GPs express the distribution over latent variables with respect to the inputs x as a Gaussian
distribution, fx � GP (m(x), k(x, x�)), parameterized by a mean function and covariance function. The
observed variable, y, is then distributed according to a likelihood function, y|fx � h(fx), given the latent
function fx. For regression, a Gaussian likelihood is often used for its tractability.
For learning and prediction with GPs one needs the inverse of the covariance matrix. This inversion of a
matrix (done usually using a Cholesky decomposition) scales with the number of training data points, N , as
O(N3). This means that in practice regular GPs can only be used on datasets with a maximum of a few
thousand data points. To get round this problem inducing points are used. These can be fewer in number
than the number of data points and optimised in position [58, 55, 4, 7] or be large in number but placed in a
computationally e�cient structure [62, 60].
In this work to pick inducing points we use the variational method of Titsias [58]. We use the framework of
Hensman et al. [22] that allows these GPs to be fitted via stochastic variational inference, and the extensions of
Hensman et al. [23, 24] that allow this to be used with the non-conjugate likelihoods necessary for classification.
To summarise this means that we are optimising the following variational lower bound during training [23,
§4]:

log p(Y) �
�

y,x�Y,X

Eq(fx)[log p(y|fx)] � KL (q(fZ)||p(fZ)) (1)

Where q(fx) is our variational approximation to the distribution of fx and Z are the locations of our inducing
points.

Kernel expressiveness. The second issue with regular GPs is the representational power o�ered by normal
kernels. People have built more expressive functions by automatically combining kernels together [14] as well
as by composing GPs together [13, 11, 15]. However, even these more sophisticated kernels do not have the
representational power to model relationships between complex high dimensional data (such as images) easily.
DNNs on the other hand have been shown to be able to generate good representations, given a large enough
dataset, on high dimensional data. Therefore, the idea of putting Gaussian processes on top of DNNs and
taking advantage of the good representations that the DNN can learn has been around for a while. Initially,
Hinton and Salakhutdinov [26] trained a deep belief network in an unsupervised manner to work out a good

2

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

2.3 Varying the Hyperparameters 19

input: X (inputs), y (targets), k (covariance function), �2
n (noise level),

x⇤ (test input)
2: L := cholesky(K + �2

nI)
↵ := L>\(L\y)

4: f̄⇤ := k>⇤ ↵

o

predictive mean eq. (2.25)

v := L\k⇤
6: V[f⇤] := k(x⇤,x⇤)� v>v

o

predictive variance eq. (2.26)

log p(y|X) := � 1
2y

>↵�
P

i log Lii � n
2 log 2⇡ eq. (2.30)

8: return: f̄⇤ (mean), V[f⇤] (variance), log p(y|X) (log marginal likelihood)

Algorithm 2.1: Predictions and log marginal likelihood for Gaussian process regres-
sion. The implementation addresses the matrix inversion required by eq. (2.25) and
(2.26) using Cholesky factorization, see section A.4. For multiple test cases lines
4-6 are repeated. The log determinant required in eq. (2.30) is computed from the
Cholesky factor (for large n it may not be possible to represent the determinant itself).
The computational complexity is n

3
/6 for the Cholesky decomposition in line 2, and

n

2
/2 for solving triangular systems in line 3 and (for each test case) in line 5.

of the likelihood times the prior

p(y|X) =
Z

p(y|f , X)p(f |X) df . (2.28)

The term marginal likelihood refers to the marginalization over the function
values f . Under the Gaussian process model the prior is Gaussian, f |X ⇠
N (0,K), or

log p(f |X) = � 1
2 f
>K�1f � 1

2 log |K|� n
2 log 2⇡, (2.29)

and the likelihood is a factorized Gaussian y|f ⇠ N (f ,�2
nI) so we can make use

of equations A.7 and A.8 to perform the integration yielding the log marginal
likelihood

log p(y|X) = � 1
2y

>(K + �2
nI)�1y � 1

2 log |K + �2
nI|� n

2 log 2⇡. (2.30)

This result can also be obtained directly by observing that y ⇠ N (0,K +�2
nI).

A practical implementation of Gaussian process regression (GPR) is shown
in Algorithm 2.1. The algorithm uses Cholesky decomposition, instead of di-
rectly inverting the matrix, since it is faster and numerically more stable, see
section A.4. The algorithm returns the predictive mean and variance for noise
free test data—to compute the predictive distribution for noisy test data y⇤,
simply add the noise variance �2

n to the predictive variance of f⇤.

2.3 Varying the Hyperparameters

Typically the covariance functions that we use will have some free parameters.
For example, the squared-exponential covariance function in one dimension has
the following form

ky(xp, xq) = �2
f exp

�

� 1
2`2

(xp � xq)2
�

+ �2
n�pq. (2.31)

Problems	with	GP

• Scalability:	
• Matrix	inversion	using	Cholesky Decomposition	is	an	O(n3)	operation
• They	use	inducing	points	to	reduce	the	complexity	to	O(nm2)
• And	they	use	a	stochastic	variant	of	Titsias’	variational	method	to	pick	the	points

• They	use	an	extension	so	that	they	can	use	non-conjugate	likelihoods	(for	classification)

• q(fx) is	the	variational	approx.	to	distribution	of	fx and	Z are	the	inducing	point	locations

• Kernel	Expressiveness:
• No	good	representational	power	to	model	relationship	between	complex	high	dimentional

data	(e.g.	images)

In this paper we explore using these GP hybrid deep models, GPDNNs. We first describe in the next section
the structure of these GPDNN models as well as indicating how they can be trained end-to-end in a scalable
manner using variational methods, GPflow [39] and TensorFlow [2]. We then perform three general sets of
experiments:

• Classification: here we use these models for image classification and in agreement with the general
findings of Wilson et al. [61] find that these models give good accuracy scores even when extended to
work on far deeper base networks or in low data regimes.

• Adversarial robustness: we then extend what was previously known about GPDNNs to show that
they appear to be more robust to adversarial examples.

• Transfer testing: finally we develop a testing framework for transferring models to new domains and
we find evidence that GPDNNs are more robust when used on challenging new domains, as shown by
smaller decreases in log likelihood and more uncertain output classes.

1.1 Background
Gaussian processes [51] are flexible Bayesian nonparametric models where the similarity between data points
is encoded by a kernel function. There are two key problems, however, when working with GPs in complicated
domains such as those of images. The first problem is scale; regular GPs are limited to datasets of a few
thousand data points. Image datasets, even the small ones, are much larger than this [32, 36]. The second
problem is the expressiveness of the kernel, as simple kernels, such as the RBF kernel, cannot build good
enough representations to work as e�ectively with images as DNNs.
In the remainder of this section we will describe the ways people have overcome these problems. We then
summarise the structure of the GPDNN model that we will use in the rest of this paper.

Scaling GPs. GPs express the distribution over latent variables with respect to the inputs x as a Gaussian
distribution, fx � GP (m(x), k(x, x�)), parameterized by a mean function and covariance function. The
observed variable, y, is then distributed according to a likelihood function, y|fx � h(fx), given the latent
function fx. For regression, a Gaussian likelihood is often used for its tractability.
For learning and prediction with GPs one needs the inverse of the covariance matrix. This inversion of a
matrix (done usually using a Cholesky decomposition) scales with the number of training data points, N , as
O(N3). This means that in practice regular GPs can only be used on datasets with a maximum of a few
thousand data points. To get round this problem inducing points are used. These can be fewer in number
than the number of data points and optimised in position [58, 55, 4, 7] or be large in number but placed in a
computationally e�cient structure [62, 60].
In this work to pick inducing points we use the variational method of Titsias [58]. We use the framework of
Hensman et al. [22] that allows these GPs to be fitted via stochastic variational inference, and the extensions of
Hensman et al. [23, 24] that allow this to be used with the non-conjugate likelihoods necessary for classification.
To summarise this means that we are optimising the following variational lower bound during training [23,
§4]:

log p(Y) �
�

y,x�Y,X

Eq(fx)[log p(y|fx)] � KL (q(fZ)||p(fZ)) (1)

Where q(fx) is our variational approximation to the distribution of fx and Z are the locations of our inducing
points.

Kernel expressiveness. The second issue with regular GPs is the representational power o�ered by normal
kernels. People have built more expressive functions by automatically combining kernels together [14] as well
as by composing GPs together [13, 11, 15]. However, even these more sophisticated kernels do not have the
representational power to model relationships between complex high dimensional data (such as images) easily.
DNNs on the other hand have been shown to be able to generate good representations, given a large enough
dataset, on high dimensional data. Therefore, the idea of putting Gaussian processes on top of DNNs and
taking advantage of the good representations that the DNN can learn has been around for a while. Initially,
Hinton and Salakhutdinov [26] trained a deep belief network in an unsupervised manner to work out a good

2

feature space for which a GP could be placed on top of. The GP was then trained on top of this network,
in a supervised manner, fine-tuning the network’s weights. More recently these hybrid models have been
built around more regular feedforward DNNs, and again been used for regression tasks [9, 63]. Wilson et al.
[61] has also looked at combining this idea with scalable GPs to create a system that can be trained in a
stochastic mini-batch manner and be used for classification. These more recent variants of deep kernels have
also been used for semi-supervised learning [28].

1.2 Structure of our model
The structure of the hybrid GPDNN architectures we consider is compared to more ordinary vanilla
convolutional neural network (CNN) structures in Figure 1. We input images to a base CNN and extract
features near the top of the network. These are either fed straight into a softmax (architecture A), through a
linear classifier with a softmax (architecture B) or into a GP, with the same number of latent functions as the
number of classes (architecture C). When feeding the output of the base CNN into architecture B or C we do
not need the dimension of this output, D, to be equal to the number of classes and so often make it higher.
Architectures A and B both represent more ordinary CNNs. We only make distinctions between them in
this paper to make the comparison between the number of layers these architectures have compared to the
GPDNN clearer and to show when comparing architectures B and C to A that it is not just an additional
hidden layer that is improving performance.
When describing the two models in legends and tables we use either NN for architecture A or B and GPDNN
for architecture C. We include in brackets after the model name the convolutional network the model is based
on, if we are comparing di�erent base convolutional networks.

Figure 1: Structure of the models we use in this paper, which are all built on top of the same base CNN
structure but with di�erent sized final layers to get D hidden units out. Each architecture learns its own
weights for the base CNN. Architectures A and B are regular DNNs with B having an extra fully connected
layer. Arch. C is the GPDNN. More explicit details for each individual model can be found in Appendix B.

For the classification from the GP into multiple classes we use a robust max likelihood [24, §4.4], [19]. The
robust max assigns probability 1 � � to that class if its latent variable is higher than all the others and
�/(number of classes � 1) if not (see §B.1 for more details).
GPDNNs are written using TensorFlow [2] and the GPflow [39] library for the GP parts. This library is able
to back-propagate through all of the GP parts including the Cholesky decomposition [42]. This means we
can easily train them end to end.
GPDNNs have a similar structure to the model in Wilson et al. [61]. Our main di�erences are in the use
of a robustmax rather than softmax and the inducing point framework (and implications this holds). As
discussed in §1.1 GPDNNs use the variational bound of Titsias [58] as an objective to optimise the inducing
points. This means that we are not limited to the additive GP model of Wilson et al. [61] and our GP can

3

Model	Architecture

see for example Rasmussen and Williams [51, §4], in which the RBF kernel is called the squared exponential
kernel. We use rectified linear units as the non-linearities in our networks.

B.1 The robustmax
The robustmax is defined as [24, 19]:

p(yx|fx) =

�
1 � �, if yx = argmaxfx

�/(number of classes -1), otherwise (4)

Note that as we have distributions over the latent variables the gradient is able to flow through these max
selecting operations and the likelihood can be evaluated through one-dimensional Gaussian quadrature. We
often chose a fixed � of 1 � 10�3 for our experiments (which are all ten classes), matching what is done in
[24, §4.4]. This will ensure that we always assign at least around 1.1 � 10�4 probability to each class and so
will lower bound our log likelihoods per datapoint at �9.1.
For some of the CIFAR-10 experiments in this appendix with the smaller networks we choose to learn the �
parameter, as these networks often get much lower accuracies than our other experiments and so 1 � 10�3

may no longer be an appropriate value. We make clear in the text when this � parameter is learnt.

B.2 MNIST architectures
This section describes the architectures we use on the MNIST dataset in the main paper.

B.2.1 Small CNN (SC) architectures
For the GP on the GPDNN models we used 100 inducing points.

Table 2: The SC (small CNN) family of models we use on MNIST.
NN (SC) (arch. A) NN (SC) arch. B GPDNN linear GPDNN RBF

Conv. (5 by 5, 32 channels)
Max pooling (2 by 2, padding is SAME)

Conv. (5 by 5, 64 channels)
Max pooling (2 by 2, padding is SAME)

FC (to 1024 units)
FC (to 10 units) FC (to 100 hidden units)

Softmax FC (to 10 units) GP (Lin + WN) GP (RBF + WN)
Softmax Robustmax Robustmax

B.2.2 DD-style CNN (DC) architectures
In Table 3 we show the DD-style CNN (DC) architecture. This has dropout rate of 0.5 on the fully connected
layer. It is trained for 50 epochs with a batch size of 128 using the ADAM optimiser. For the GPDNN model
we use 100 inducing points.

B.3 CIFAR-10 architectures
B.3.1 DenseNet based models
The DenseNet [27] model we use is shown in Table 4
A DenseNet block corresponds to 12 convolutional (3 by 3, 12 channels) layers, with the later ones receiving
all of the outputs of the previous ones as their input. The transition layers consist of a convolutional layer (1
by 1, same number of channels out as coming in) followed by a 2 by 2 average pooling. Dropout and batch
normalisation was used when training using the softmax tops, however it was turned o� when training the

14

Classification	(MNIST)

operate on the whole hidden layer as input. The tradeo� is that GPDNNs scale worse in inducing point
number. Generally, however, we expect that this family of architectures will perform comparably and that the
improved results we show on CIFAR-10 in the next section is down to choosing better base CNNs. Likewise,
we expect that the new promising properties of these GPDNNs models we show in the following sections may
also apply to other hybrid models such as those described in Wilson et al. [61].

2 Classification
We start o� by looking at how GPDNN models do on classification tasks. In particular we look at the MNIST
[36] and CIFAR-10 [32] datasets. We report error rates and log likelihoods as the amount of training data
the models have access to is varied.

2.1 MNIST
For the MNIST experiments we use as the base CNN the one from the TensorFlow MNIST tutorial1. This
consists of two convolutional layers followed by two fully connected layers. We refer to this CNN as small
CNN (SC) throughout this paper. We assess GPDNNs with linear and RBF kernels.
We take the first 5000 training images and split this o� into a validation set. Its size and members remain
identical throughout our experiments. We then take the remainder of the training set and train on di�erent
proportions of this. We train everything using ADAM [31] for 6000 iterations (batch size of 250). We monitor
the validation error and report the test set errors and log likelihoods in Figure 2 for when this validation
error is the lowest.

(a) Errors (b) Log likelihoods

Figure 2: How the hybrid GPDNN compares to the NN model on MNIST test set as the amount of data
it trains on is varied. Proportions of 0.1 means we are using 5500 (0.1 � 55000) for training (with a 5000
validation set). A change of 0.001 in error corresponds to 10 images. Please see §B.2.1 for specific details on
the architectures.

From Figure 2 one can see that GPDNNs generally have lower error rates and higher log likelihoods, with the
gap being most pronounced when one is training on small amounts of data. The architecture B model seems
to make some gains with the extra hidden layer, however, it is still short of the hybrid models, showing the
extra capacity is not equivalent to one extra layer. Out of the two GPDNN models the RBF kernel does
better in log likelihoods compared to the linear kernel, although they perform similarly in terms of error.
This could be because the RBF kernel will not overconfidently extrapolate so far in the final layer and so
when it is incorrect on points it does not have as high surprise values. We use the RBF kernel with all hybrid
models going forwards.

1available at https://www.tensorflow.org/get_started/mnist/pros

4

Classification	(CIFAR10)

2.2 CIFAR-10
We next assess the GPDNN models on CIFAR-10. For the base CNN we use 40 layer deep DenseNets [27].
We were unable to train the hybrid networks starting from random initialisations, so instead we train a
regular FC to softmax output for either 225 or 300 epochs before switching to the GP top (e�ectively we
start o� training architecture B and switch to C). Further training details are in the appendix.
The errors and log likelihoods are plotted in Figure 3. E�ectively we are comparing architecture A for the
NN against that of C for the GPDNN. We see that generally the GPDNN performs marginally better than
the regular NN in terms of both accuracy and log likelihood. However, the longest training NN has the lowest
error when trained on 10% of CIFAR’s training set. This may be because it benefits from the larger number
of steps, which has overall decreased as the size of an epoch has got smaller.

Figure 3: How the GPDNN model compares to the NN model on the CIFAR-10 test set as the amount of
data it trains on is varied. The hybrid networks are trained for 500 epochs, with the switching point from
architecture B to C shown in the key. The regular NN (arch. A) models are trained for a number of epochs
indicated in the key. Note that when training with a smaller proportion of the dataset we run for less steps
as the epochs are smaller.

3 Robustness to adversarial examples
Szegedy et al. [57] showed that neural networks su�er from adversarial examples. These are examples that
are classified incorrectly even though they lie only a short distance (in image space) from correctly classified
images. What is worrying about these adversarial examples is that they are often transferable between
di�erent architectures [57, 38, 40, 50, 20] and even between di�erent machine learning methods [47, 59]. What
is also concerning is that current vulnerable classifiers are also vulnerable to attacks that only operate on a
smaller randomly chosen image subspace [16].
One can choose to divide up adversarial attacks into two groups based on whether they are targeted or not.
Targeted attacks [57, 48, 10, 34] take the classification model M�(x) and find a perturbation µ such that the
new prediction, M�(x + µ) = l�, equals a particular class that they choose. Non targeted attacks [20, 41, 40]
try to find a perturbation such that M�(x + µ) �= M�(x), but do not care what the new class prediction is.
In this paper we consider only non targeted attacks.
The attacker wants adversarial attack perturbations to be small in magnitude. This would demonstrate a
very fragile and easy to trick model. Whilst ideally you would want some measure based on human sensitivity,
such as in Papernot et al. [48], this is complicated to carry out. Therefore, perturbations are more often
judged in terms of some distance metric, such as the Euclidean distance from the original image. The attacks
are often designed with some metric in mind.
In this section, we want to assess whether GPDNNs have better uncertainties around the images they are
trained on and so either maintain correct predictions further out or adjust their confidences appropriately.
Adversarial robustness can be assessed through looking at the accuracy/likelihood of perturbed examples
and the distance perturbed examples lie for each classifier as well as the predictive entropy of the models on

5

Adversarial	Robustness

• Attacks	are	often	transferable	between	different	architectures	and	
different	machine	learning	methods

• Given	a	classification	model	!"(x) and	purturbation	#	attacks can	be	
divided	to:

• Targeted:	!" % + # = (′
• Non-targeted:	!" % + # ≠ !"(%)

The	fast	gradient	sign	method	(FGSM)

• It	perturbs	the	image	by:	# = -	./01(23	4 ", 3, 6)

FGSM	(MNIST)

FG
SM

	(M
N
IS
T)
	–
At
ta
ck
in
g	
G
PD

N
N

U
nc
er
ta
in
ty

A Why may Gaussian processes o�er better uncertainty estimates com-
pared to neural networks?

We argued in the main text that GPDNNs (with RBF kernels) take the nice properties of RBF GPs, namely
their lack of overconfidently extrapolating to new areas. We argued that this could be the reason why they
were more resistant to adversarial examples and did not show an unreasonable level of overconfidence in new
domains.
We further demonstrate this idea in a simple two dimensional example in Figure 8. Here one is building a
classifier to split up two half moon shaped classes. Of course in such a simple problem you would not need
the power of the complicated representations that the NN is able to learn and an ordinary GP with an RBF
kernel performs very well. However, this simple example demonstrates that the GPDNN (RBF) has some of
its properties and does not overconfidently extrapolate as far as the models that have linear last layers.

(a) zoomed in

(b) zoomed out

Figure 8: Comparison of the decision boundary of a neural net, a normal GP and a GPDNN on a half moon
binary classification problem. The NN and GPDNN models have two hidden layers of 75 units and 10 units
respectively with either a linear softmax classifier (for the NN) or a GP (for the GPDNN) on top of this. The
regular GP has an RBF kernel and we show a GPDNN with a linear and a RBF kernel.

B Model architectures and training details
Here we clarify the architectures we use in the paper. In this section we abbreviate fully connected layers to
FC, the white noise kernel to WN and the Linear kernel to Lin. For definitions of these covariance functions

13

A Why may Gaussian processes o�er better uncertainty estimates com-
pared to neural networks?

We argued in the main text that GPDNNs (with RBF kernels) take the nice properties of RBF GPs, namely
their lack of overconfidently extrapolating to new areas. We argued that this could be the reason why they
were more resistant to adversarial examples and did not show an unreasonable level of overconfidence in new
domains.
We further demonstrate this idea in a simple two dimensional example in Figure 8. Here one is building a
classifier to split up two half moon shaped classes. Of course in such a simple problem you would not need
the power of the complicated representations that the NN is able to learn and an ordinary GP with an RBF
kernel performs very well. However, this simple example demonstrates that the GPDNN (RBF) has some of
its properties and does not overconfidently extrapolate as far as the models that have linear last layers.

(a) zoomed in

(b) zoomed out

Figure 8: Comparison of the decision boundary of a neural net, a normal GP and a GPDNN on a half moon
binary classification problem. The NN and GPDNN models have two hidden layers of 75 units and 10 units
respectively with either a linear softmax classifier (for the NN) or a GP (for the GPDNN) on top of this. The
regular GP has an RBF kernel and we show a GPDNN with a linear and a RBF kernel.

B Model architectures and training details
Here we clarify the architectures we use in the paper. In this section we abbreviate fully connected layers to
FC, the white noise kernel to WN and the Linear kernel to Lin. For definitions of these covariance functions

13

Zo
om

ed
	in

Zo
om

ed
	o
ut

Intuition	behind	

Adversarial	Robustness

Nonlinear

Linear

L2	Optimization	Attack

Where	D	is	a	distance	metric,	and	delta	is	a	small	noise	change	

L2	Optimization	Attack

Where	f	can	be	equal	to:	

Derivations	taken	from	Carlini et	al.	“Towards	Evaluating	the	Robustness	of	Neural	Networks”

Attacking	GPDNN
On	1000	MNIST	Images:

• 381	attacks	failed

• Successful	attacks	have	a	

0.529	greater	perturbation	

• GPDNN	more	robust	to	

adversarial	attacks

On	1000	CIFAR10	Images:

• 207	attacks	failed

• Greater	perturbation	

needed	to	generate	

adversarial	examples

Attacking	GPDNN

Attack	Transferability
MNIST

CIFAR

Transfer	Testing

How	well	GPDNN	models	notice	domain	shifts?
MNIST																		ANOMNIST																		Semeion																						SVHN	

Transfer	Testing	Results

Transfer	Testing	Results

Conclusion

• Explored	GPDNN’s	robustness	in	classification

• These	hybrid	models	are	competitive	to	other	NN’s

• They	have	better	calibrated	uncertainties

• Better	at	knowing	“when	they	don’t	know”

