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Introduction

- adversarial examples: Inputs formed by applying small but worst-case
perturbations to examples from the dataset, such that the perturbed input
results in the model outputting an incorrect answer with high confidence.
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a wide variety of models with different architectures trained on different
subsets of the training data misclassify the same adversarial example
causes of adversarial examples a mystery: Extreme non-linearity of NNs?
Insufficient model averaging? Insufficient regularization?

suggests that classifiers based on most ML techniques are not learning

the true underlying concepts that determine the correct output label
- models do well on naturally occurring data, but fail for points x where P(x) is
very low
potential for use in adversarial training




Linear Explanation of Adv. Examples

- Let adversarial input x’ = x + n for some input x.

- For aclassifier F, we expect F(x) = F(x') if ||n]|_ < &, for e small enough to be
discarded by the sensor or data storage.

- Dot product of weight w and an adversarial example x" isw'x + w'e (i.e.,
activation grows by w'e).

- Put another way, activation grows by emn, where n is the dimensionality of w,
and m is the average magnitude of a weight.
- Asimple linear model can have adversarial examples if its input has

sufficient dimensionality.



Linear Perturbation of Non-Linear Models

- LSTMs, ReLUS, and maxout networks are all designed to behave in highly

linear ways, so that they are easier to optimize.
- More nonlinear models such as sigmoid networks are tuned to spend most of
their time in the non-saturating, more linear regime for the same reason.
- Fast Gradient Sign Method (FGSM): n = & sign(V J(6.x,y))
- errorrateson MNIST: 99.9% on shallow softmax with 79.3% avg. confidence,
89.4% on maxout with an avg. confidence of 97.6%
- High error rates support the theory that the effectiveness of adversarial examples
can be ascribed to model linearity.




Adversarial Training of Linear Models

- For logistic regression, FGSM is the optimal perturbation method; exact,
not just an approximation (increases error rate to 99% on MNIST).
- Adversarial training of logistic regression involves minimizing (where C is

log(1 + exp(z))):
E..COElwll, —wix-b)

- Similar to L1 regularization, but less punitive; penalty effectively

disappears when ( is saturated.
- When model underfits, adversarial training will simply worsen underfitting.



Adversarial Training of Linear Models (2)
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(a) Weights of a logistic regression model trained on MNIST. (b) Sign of those weights (optimal
perturbation). (c) MNIST 3’s and 7’s. (d) FGSM adversarial examples with e = 0.25 — 99% error rate.
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3. DISCUSSION AND
* Deep networks are vulnerable CONCLUDING REMARKS

to adversarial examples
The results of Section 2 establish that standard mul-

« Unlike shallow linear models, tilayer feedforward networks are capable of approx-
deep nets can ATLEAST imating any measurable function to any desired de-

represent functions robust to

T & A Taind Hl g nY ' CAI R o "wl 1"'1 1 ¢ -'1-,-: H
adversaries gree of accuracy, in a very specific and satistying

sense. We have thus established that such “mapping”
networks are universal approximators. This implies

* (Hornik et.al Multilayer

feedforward Networks are that any lack of success in applications must arise
universal approximators, 1989) from inadequate learning, insufficient numbers of

hidden units or the lack of a deterministic relation-
ship between mput and target,




IDEA 1 (we will see others as
well)

 An obvious choice : train the
net with adversarial
examples

» [Szegedy et.al 2014,
Intriguing Properties of
Neural Networks] Tried this
on MNIST, ImageNet etc.

* And it’s worth digressing to
see their results




We denote by f : B™ — {1...k} a classifier mapping image pixel value vectors to a discrete
label set. We also assume that [ has an associaled continuous loss function denoted by loss; -
RB™ x {1...k} — R*. Fora given x £ R™ image and target label [ £ {1.. .k}, we aim to solve
the following box -constrained optimization problem:

* Minimize |r||s subject to:

| flz+r)=I
2r+rellm

The minimizer » might not be unigue, but we denote one such = + r for an arbitranly chosen
minimizer by [)(z.[). Informally, = + r is the closest image to x classified as [ by [. Obviously,
Diz, flz)) = flz), so this task is non-trivial only if f(x) # [. In general, the exact computation
of D){z,[) is a hard problem, so we approximale it by using a box-constrained L-BFGS. Concretely,




Model Name || Description Traming error | Testerror | Av. min. distortion
RCI0L0™4) || Softmax with A = 10~ 6.7% 14% 0.062
FCI0(10™%) || Softmax with A = 102 10% 9.4% 0.1

FC10(1) Softmax with A = 1 21.2% 20% 0.14
FC100-100-10 || Sigmoid network A = 10"5, 107°, 1078 | 0% 1.64% 0.038
FC200-200-10 || Sigmoid network A = 102 107", 1078 | 0% 1.54% 0.065

AE400-10 Autoencoder with Softmax A = 10 0.57% 1.9% 0.086

Table 1: Tests of the generalization of adversarial instances on MNIST.




FCI0(10=4) | FCI0(10=2) | FCIO(1) | FCI00-100-10 | FC200-200-10 | AE400-10 || Av. distortion
k10010 100% 11.7% 20.1% 2% 3.9% 2.7% 0.062
FC10(10~2) 87.1% | 00% 33.2% 35.9% 21.3% 0.8% 0.1
FCI0(1) 11.9% 16.24 1004 48.1% 41% 34.4% 0.14
FC100-100-10 28.9% 13.7% 21.1% 100% 6.6% 2% 0.058
FC200-200-10 38.26 145 23.8% 20.3% 1004% 2.7% 0.063
AE400-10 849 16% 24.8% 9.4% 6.6% 100% 0.086
Gaussian noise, stddev=0.1 || 3.0% 10.1% 18.3% 0% 0% 0.8% 0.1
Gaussian noise, stddev=03 || 15.6% 11.3% 20.1% 5 4.3% 3.1% 0.3

Table 2: Cross-model generalization of adversarial examples. The columns of the Tables show the error induced
by distorted examples fed to the given model. The last column shows average distortion wrt. original training
set.



This time around the authors tried something
different...



* Improvement: Training with an adversarial objective function turns out
to be an effective reqgularizer:

J(O.x. y) = adJ{@,z,y)+ (1 —a)J (0, +esign (Vo J(0, 2, 1)) .

* So we update the Adversarial Examples to make them resist the
current model

* Result — Error rate went from 0.94% to 0.77% (maxout net with
regularisation and early stopping on adversarial validation error set)



But more Importantly...

* Previously :
misclassified e Now :
89.4% of
o arial Erro:; rate fell to
examples with 17.9%! (GREAT!)
97.6% avg However still with a
confidence confidence of 81.4!

(Not so great)




Then there are these
questions...

* Why do adversarial examples
generalise?

* Adversarial example generated
for one model gets misclassified
by other nets...

* Further, the models often agree
on the misclassified class.
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Figure 4: By tracing out different values of €, we can see that adversarial examples occur reliably
for almost any sufficiently large value of € provided that we move in the correct direction. Correct
classifications occur only on a thin manifold where a occurs in the data. Most of R™ consists of
adversarial examples and rubbish class examples (see the appendix). This plot was made from a
naively trained maxout network. Left) A plot showing the arcument to the softmax layer for each of
the 10 MINIST classes as we vary € on a single input example. The correct class is 4. We see that the
unnormalized log probabilities for each class are conspicuously piecewise linear with e and that the
wrong classifications are stable across a wide region of € values. Moreover, the predictions become
very extreme as we increase € enough to move into the regime of rubbish inputs. Right) The inputs
used to generate the curve (upper left = negative e, lower right = positive ¢, yellow boxes indicate
correctly classified inputs).



Two Viewpoints

»1- Adversarial Examples finely
tile the space like Rational
Numbers among Real Numbers

« 2 — (we just saw) Adversarial
examples occur in contiguous
regions of space (here, space
defined by the fast gradient
method)




* This would explain why adv examples are abundant and why
an adv example has fairly high chances of getting
misclassified by another classifier

* To explain why different classifiers agree on the misclassified
class: authors hypothesise that the nets trained with current
techniques resemble the same linear classifier learned on the
same set



Next the authors
debunk some
other hypotheses




* “Generative models can be more robust to adversarial
examples than discriminative models” : Took MP-DBM model
showed 95% error rate on adversarial examples, debunking
this theory

* “Ensembles can ‘wash out’ Adversarial Examples” : Trained
12 maxout nets on MNIST still got 91% error rate on
adversarial examples (87% when examples were generated
for just one net)



*The generalization of
adversarial results from
adversarial distortion
being highly aligned with
the weight vectors of a
model, different models
learning similar functions.




*The fact that these simple,
cheap algorithms are able
to generate adv examples
serves as evidence that
they are a result of
linearity rather than non
linearity.




That’s all, the
next group
will now take
it forward
from here!



Adversarial examples can be explained as a result of high-dimensional dot
products; result of too much linearity, not non-linearity.

- Direction of perturbation, not specific point in space, matters most.
Generalization of adversarial attacks due to different models learning
similar functions for a given task.

FGSM is a fast and effective way of generating adversarial examples.
Adversarial training result in regularization (even more than dropout).
Linear models lack capacity to resist adversarial perturbation; only
structured with a hidden layer can be trained to do so.



Adversarial Examples for
Generative Models

Jernej Kos, lan Fischer, Dawn Song
Presenters: Atef Chaudhury, Brandon Zhao, Kevin Shen



Overview

We have already seen from past papers that discriminative models suffer from
adversarial examples

This paper looks at how generative models are also susceptible to adversarial
examples



Rest of Presentation

1.  Quick review of VAEs

2. Motivating scenario for an adversarial attack on generative models

3. The three attack methods described by the paper, and their underlying
mechanism

4. The results of these attacks

5. Areas for future work



Quick Review of Variational Autoencoders

VAEs sample a latent space to generate examples from a distribution of interest

e |Learn an encoder function (typically an NN) to map high-dimensional input x to low-dimensional
latent space z
e Learn a decoder function (also an NN) to map back from latent space to high-dimensional output

Encoder Decoder

X > - I — — X
fcnc fdcu




Motivating Scenario

VAEs can be used as compressed communication channels

What if an adversary tricks the sender into transmitting an input that resembles
something entirely different once it is reconstructed

{Z—l---o--» foe AAAAN] —?»O

Attacker Sender Recelver




Attacks
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X — — 7 —> —> X
E .f;:nc f dec 1
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Classifier
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Red: Classifier Attack
Yellow: Latent Attack
Blue: VAE Attack



Classifier Attack

: I
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] Encoder Decoder A
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argmin L(z™,ys) + A ||z — 27|
>

L(z",y;) = CrossEntropy (foiass (%), 1)



Latent Attack
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VAE Attack

{ """"""""""""""""""""""""""""""""""""""""" :
: Encoder Decoder .

X — > 7 > —> X
' Jenc Jaec |
; I
| L T I

Classifier >

ﬁ:]ass

argmin L(x™,x;) + A||z — 27|
:1-:*

L(z", 1) = Lvac(2", T1) = —Dxwlg(z]27)|[p(2)] + Eq[log p(7+]2)]



L(xz*, z;)

Image or class level

Most effective attacks

L(z*,y:)

Class level

Reconstructions are
bad

Adversary needs
labels for images

L(x™, x;)

Image level

Computationally
expensive



Evaluation Setup

e A separate classifier is used to evaluate the accuracy of the reconstructions.
e A reconstruction feedback mechanism (i.e. pass the reconstructed image
back through the encoder) is used to improve the accuracy of this classifier.

37 — fcla,ss (fenc (i*)) .



Evaluation Metrics

Based on the classifier output, two metrics were computed

1) attack success rate ignoring targeting

N
1
AS’igno'r'e—target — N ; lﬁi;éyi

2) attack success rate including targeting

1 N
ASturge = 2 3Ty
=1



Metrics Evaluation for MNIST Classifier attack

Source Target 0 Target 1 Target 2 Target 3 Target 4 Target 5 Target 6 Target 7 Target 8 Target 9
0 i 40.96% 6.02% 10.84% 75.90% 6.02% 28.92% 37.35% 6.02% 10.84%
(1.20%) (4.82%) (7.23%) (0.00%) (3.61%) (28.92%) (20.48%) (1.20%) (3.61%)
1 99.20% _ 7.20% 1.60% 85.60% 8.00% 28.80% 8.80% 3.20% 69.60%
(77.60%) (5.60%) (1.60%) (0.00%) (5.60%) (28.00%) (7.20%) (1.60%) (0.80%)
5 85.96% 3.51% i 29.82% 78.95% 72.81% 72.81% 35.09% 41.23% 68.42%
(80.70%) (2.63%) (23.68%) (0.00%) (20.18%) (46.49%) (8.77%) (12.28%) (2.63%)
3 93.46% 26.17% 27.10% ) 67.29% 66.36% 87.85% 50.47% 23.36% 33.64%
(83.18%) (12.15%) (16.82%) (0.00%) (62.62%) (22.43%) (27.10%) (8.41%) (8.41%)
4 100.00% 70.00% 28.18% 84.55% i 66.36% 95.45% 62.73% 20.91% 51.82%
(82.73%) (48.18%) (10.91%) (17.27%) (31.82%) (71.82%) (37.27%) (0.91%) (44.55%)
5 93.10% 21.84% 68.97% 28.74% 3.45% ) 20.69% 80.46% 22.99% 44.83%
(89.66%) (1.15%) (11.49%) (18.39%) (0.00%) (19.54%) (41.38%) (2.30%) (12.64%)
6 29.89% 44.83% 24.14% 59.77% 77.01% 10.34% i 62.07% 8.05% 75.86%
(28.74%) (1.15%) (3.45%) (11.49%) (0.00%) (8.05%) (8.05%) (0.00%) (4.60%)
7 79.80% 77.78% 20.20% 8.08% 100.00% 56.57% 97.98% ) 38.38% 17.17%
(65.66%) (26.26%) (8.08%) (4.04%) (0.00%) (23.23%) (17.17%) (1.01%) (10.10%)
8 94.32% 96.59% 60.23% 57.95% 100.00% 93.18% 100.00% 100.00% i 87.50%
(84.09%) (18.18%) (42.05%) (43.18%) (0.00%) (80.68%) (57.95%) (34.09%) (26.14%)
9 98.91% 97.83% 26.09% 17.39% 100.00% 22.83% 100.00% 47.83% 31.52% i
(79.35%) (33.70%) (1.09%) (2.17%) (0.00%) (21.74%) (30.43%) (43.48%) (4.35%)




MNIST: Successful Latent Attack

Adversarial Reconstructions

Adversarial Examples
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CelebA: Successful Latent Attack

Adversarial Reconstruction

Adversarial Examples
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SVHN: Failed L __ Attack

Reconstructions from LVae Attack Reconstructions from Latent Attack




Future works and Relevant Papers

1. Attacks on natural image dataset such as CIFAR-10 or Imagenet
2. Defence and robustification against these attacks

MagNet: a Two-Pronged Defense against Adversarial Examples

They use VAEs to detect and fix adversarial examples for a classifier (which may not work if
you know how to attack the VAEs in the first place)

Adversarial Images for Variational Autoencoders

Original VAE attack paper



Appendix



MNIST: Failed FGS optimization

VAE-GAN Reconstructions

VAE Reconstructions

NT—~TL-O0N~O
VoA TFr rmadw
ENT —~A~Td N
FOrCF”s, TSN N~
~VQ0NwOo =T ¥
T—-—TNAISN— Y~
oW IAUMNTm®
~ 09 mrrhoee
NOYW -~ Ad K Qovw
NO®SMN—~N[~NCcMN

T~ T LVOUONSNGS

VADSAFTEme,Id
CNTF -~
: L.. e n:..\LL.. R
YN Q T WRYY
RN .,.,7}...m ?.! < -
QT A T

,o.. .Q.... Sy ..() = (Y l
NE R K X RO R
RO NN AN OW



Possible hypothesis for why adversarial attacks work

- (although this paper won’t explore them, good to keep in mind)
- Posteriors of training examples tend to clump together, why do adversarial

examples work?
- Insufficient posterior: gaps that are not being filled by the posteriors of different data points, q
is a poor approximation to posterior
- Interpolation between the means of the posteriors of two datapoints is adversarial
- Adversary exploits the architecture of the neural network (i.e. it's the sample problem as the
classifier)



Additional details

In all attacks, they train with mean latent z from encoder, they do not sample
they blame bad reconstruction for y-attack on classifier inaccuracy but it's
probably because adversarial z's in classifier’s input space do not correspond

to actual images



Evaluation Criteria

1. Loss Type: Classifier versus L, ,. versus Latent

2. Optimization type: L, Optimization versus FGS



Potentially relevant papers

Cited

- Adversarial Images for Variational Autoencoders
- They did a subset of what this paper did, results are not very important

Cited by

- MagNet: a Two-Pronged Defense against Adversarial Examples

- They use VAEs to detect and fix adversarial examples for a classifier (which may not work if
you know how to attack the VAEs in the first place)



Limitations of Deep Learning
in Adversarial Settings

Paper by: Nicolas Papernot, Patrick McDaniel, Somesh Jha,
Matt Fredrikson, Z. Berkay Celik, Ananthram Swami

Presented by: Ramin Hamedi and Matthew MacKay



Presentation Summary

Threat model taxonomy

Generic algorithm to construct adversarial examples
Application of algorithm to MNIST
Metrics to evaluate attack’s effectiveness

H W N



Threat Model Taxonomy

e Adversary seeks to provide an input to a deep learning classifier causing
undesired behavior
e Adversarial Goals:
o What behavior is adversary trying to elicit?
e Adversarial Capabilities:
o What information can adversary use to attack our system?



Adversarial Goals

1.

Probability
o o &
[e)} o0} o

o
N

o
[N}

o
o

Confidence Reduction: reduce output confidence classification
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Adversarial Goals

2.

Probability
o o o &
N [e)} o0} o

o
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o
o

Misclassification: perturb existing image to classify as any incorrect class
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Adversarial Goals

3. Targeted misclassification: produce inputs classified as target class

Probability
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Adversarial Goals

4. Source/target misclassification: perturb existing image to classify as target class

Probability
o o o &
N [e)} o0} o

o
[N}

o
o

5 10 15 20 25

Output Probabilities

1
Digit Class

Probability
o o o =
N [e)] (o] o

o
[N)

o
o

Output Probabilities

0.24
0 1

Digit Class

0.65




Adversarial Goals (Summary)

1.  Confidence Reduction: reduce output confidence classification

2. Misclassification: perturb existing image to classify as any incorrect class

3. Targeted misclassification: produce inputs classified as target class

4. Source/target misclassification: perturb existing image to classify as target class
Increasing
complexity



Adversarial Capabilities (Summary)

e What information can adversary use to attack our system?

Training data and network architecture

Network architecture

Training data

Oracle (can see outputs from supplied inputs)

5. Samples (have inputs and outputs from network but cannot choose inputs)

W N o

Decreasing
knowledge




Threat Model Taxonomy (Summary)
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attack difficulty

Adversarial Goals:
o What behavior is adversary trying
to elicit?
Adversarial Capabilities:
o What information can adversary
use to attack our system?
In this paper:
o Goal: Source/target
misclassification
o Capability: Architecture



Formal Problem Definition

e Given a trained neural network F' : RD — I[s’écsuch that
softmax(F(X)); = Pr(class(X) = j)
o let FI(X) = argmaxjsnftmax(F(X))j



Formal Problem Definition

Also given: training example X and a target label Y™

Goal: Find X *sit. F(X") =Y "and X ™ similarto X

More formally: find 8 x satisfying §x = argming||d]|| s.t. F(X +68) =Y "
Then:set X™* = X + S x

+




Summary of Basic Algorithm

Compute the Jacobian matrix of [ evaluated at input X

Use Jacobian to find which features of input should be perturbed
Modify X by perturbing the features found in step 2

Repeat while X not misclassified and perturbation still small

H W N



Step 1. Compute Jacobian

e Recall F:RY — R®
e The Jacobian :—)Iz(x) is defined to be a C' X D matrix such that:

OF vii s OF
O Vi 4] =
X T X,

(X)

e Note: this is not equivalent to the derivative of the loss function!
e F[or explicit computation, see paper. Otherwise, just use auto-diff software



Step 2: Construct Adversarial Saliency Maps

e Set ¢ — Y *. Define an adversarial saliency map S(X, t)by:

OF:(X) OF:(X)
0 if L < 0 or >0
S(X, t)[i] = 0X, Lt TIX,

( ) D e At T OX, otherwise

e High value of saliency map correspond to input features that, if increased, will:
o Increase probability of target class
o Decrease probability of other classes



Question: Why not probabilities?

e We could have defined F' to be output after softmax, not before
e However, doing so leads to extreme derivative values due to squashing
needed to ensure probabilities add to 1

e This reduces quality of information about how inputs influence network
behavior

e Binary classification example: sigmoid
derivatives vanish in the tails




Saliency Map Example

10741 factor




Step 3: Modify input

e Choose i = argmax,;S(X,Y ™)[i]
e Change current input by setting X *[{] = X ™[] + 6
e (@ is problem specific perturbation amount (later will discuss how to set)

=

BEFORE * AFTER




Application of Approach to MNIST

e Assume attacker has access to trained model

e |n this case: LeNet architecture trained on 60000 MNIST samples

e Objective: Change a limited number of pixels on input X, originally correctly
classified so network misclassifies as target class Y*

C3: f. maps 16@10x10

INPUT C1: feature maps S4: f. maps 16@5x5

32x32 6@28x28

S52: f. maps

|
Full conljlection ‘ Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.




Practical Considerations

e Set perturbation amount 8 to 1 (turning pixel completely on) or -1 (turning
completely off)

o If @ anintermediate value, more pixels need to be changed to misclassify
e Once a pixel reaches zero or one, we need to stop changing them

o Keep track of candidate set of pixels I" to perturb on each iteration
e Very few individual pixels have saliency map value greater than O

o Instead consider two pixels at a time (see paper for changed saliency

map)



Practical Considerations (continued)

e Quantify maximum distortion Y by allowable percentage of modified pixels
(e.g. T = 5)
e The maximum number of iterations will be:

784 -1
2-100

max_iter = {

e Note: two is in denominator because we are tweaking two pixels per iteration



Formal Algorithm for MNIST

Input: X, YY", F, Y, 6

1. Set X* — X, max_iter= {728_41'0“ I ={1,...,784}

2. while F(X*) + Y™ and iter < max_iter and I #

3 Compute Jacobian matrix :—i(X*)

4 Compute modified saliency map S(X YT, I') for two pixels
5. Find two “best” pixels pi1, p2 and remove them from T°

6 Set X*[p;] = X [pi] + 6

7/ Increment iter

8. Return



Results for Empty Input
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Success Rate and Distortion

® Success rate: percentage of adversarial samples that were successfully
classified by the DNN as the adversarial target class

e Distortion: percentage of pixels modified in the legitimate sample to obtain the
adversarial sample

e Two distortion values computed: one taking into account all samples and a
second one only taking into account successful samples



Results

Source set Adversarial Average distortion

of 10,000 samples All Successful
original successfully | adversarial adversarial
samples misclassified | samples samples
Training 97.05% 4.45% 4.03%
Validation 9F19% 4.41% 4.01%
Test 97.05% 4.45% 4.03%

Table shows results for increasing pixel features




Source-Target Pair Metrics
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Hardness Matrix

e Can we quantify how hard it is to convert different source-target class pairs?
e Define:

o T :SUCCess rate
o E(S’ i q-] . average distortion required to convert class s to class t with success rate T

H(s,t) =fTE(S,t,T)dT

e In practice: obtain (eg, Tx ) pairs for specific maximum distortions Y
(average over 9000 adversarial samples)

e Then estimate as: K-1 (s, ) +e(s,t, 1)
£ Sj ?T & Sj 1T.IE
H(s,t) ~ ) (Ths1 — k) = 2

k=1




Adversarial Distance

e Define A(X,t): the average number of zero elements in the adversarial
saliency map of X' computed during the first crafting iteration

e Closer adversarial distance is to 1, more likely input will be harder to
misclassify
e Metric of robustness for the network:

R(F) = &1% A(X,t)



Adversarial distance
N e =

1050

" -
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a
T

4150
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Source Source
Hardness matrix of source-target class pairs. Adversarial distance averaged per source-destination

e Adversarial distance is a good proxy for difficult-to-evaluate
hardness




Takeaways

Adversary Taxonomy
1. Can model multiple levels of adversarial capabilities/’knowledge
2. Adversaries can have different goals- what unintended behavior does
adversary want to elicit?

Algorithm for Adversarial Examples

1. Small input variations can lead to extreme output variations

2. Not all regions of input are conducive to adversarial examples
3. Use of Jacobian can help find these regions

Results

1. Some inputs are easier to corrupt than others

2. Some source-target classes are easier to corrupt than others
3. Saliency maps can help identify how vulnerable network is



Thanks!
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Introduction -

* Some issues with plain DNNs:

* Do not capture their own
* |Importantin , ) e

* Vulnerable to Y 2 M N N NN NN NN~

* Important in security sensitive and safety regimes

* Models with good uncertainty may be able to
prevent some Adversarial examples. tormm , , -

* So let’s make DNNs Bayesian and account for
uncertainty in the weights. | =

0.4

* Bayesian non-parametrics such as
(GP) can offer good probability estimates ooﬂllgli | ITe.

. )
* In this paper they use GP hybrid Deep Model () Softmax output scate

| |
- N o N = [} (o2}
T T T T

(a) Softmax input scatter

Pictures from Yarin Gal et al. “Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning”



Outline of the paper

e Background
* Model architecture

* Results
* Classification Accuracy

* Adversarial Robustness
* Fast Gradient Sign Method (FGSM)
* L2 Optimization Attack of Carlini and Wagner

* Transfer Testing



Background

* GPs express the distribution over latent variables with respect to the
inputs x as a Gaussian distribution:

fu ~ GP (m(z), k(z,z"))

* And the learning of the parameters of k amounts to optimization of
the following log marginal likelihood:

logp(y|X) = —3y (K +o,1) "'y — 3log|K + o, 1| — % log 27



Problems with GP

e Scalability:
* Matrix inversion using is an O(n3) operation
 They use to reduce the complexity to O(nm?)

* And they use a stochastic variant of Titsias’ variational method to pick the points
* They use an extension so that they can use non-conjugate likelihoods (for classification)

logp(Y) > > Eyio)llogp(ylfa)]l — KL (a(f2)lIp(f2))

* q(f,) is the variational approx. to distribution of f, and Z are the inducing point locations

* Kernel Expressiveness:
* No good representational power to model relationship between complex high dimentional
data (e.g. images)



Model Architecture o
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Classification (MNIST)
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Classification (CIFAR10)
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Adversarial Robustness

e Attacks are often transferable between different architectures and
different machine learning methods

* Given a classification model M4(x) and purturbation u attacks can be
divided to:
e Targeted: My(x +u) =1l
* Non-targeted: My(x + u) # My(x)



The fast gradient sign method (FGSM)

* It perturbs the image by: u = e sign(V, J(6,x,y))

Error
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Log likelihood

FGSM (MNIST)

e NN (SC) on NN (SC) targeted examples

e NN (DC) on NN (SC) targeted examples ®
e GPDNN (SC) on NN (SC) targeted examples
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FGSM (MNIST) — Attacking GPDNN
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Nonlinear
Linear

Intuition behind
Adversarial Robustness

)

GPDNN (Lin

GPDNN (RBF) GPDNN (Lin)

GPDNN (RBF)

_0) @8
@ 9e””
O .@W»@m‘

Ul paWooy7 1N0 P=aW 00y

Ajulelsaosun



L2 Optimization Attack

minimize D(x,x + 6)
such that C'(x +9) =t
r+46€|0,1]"

Where D is a distance metric, and delta is a small noise change



L2 Optimization Attack

minimize D(z,x + ) +c- f(x + 9)
such that =+ 9 € [0,1]"

Where f can be equal to: f1(z) = —lossr(z’) +1
fa(z') = (max( (x)i) = F(2')e) "
fs(z') = oftplus(mggc(F(x')i) — F(z'):) — log(2)
fa(z') = (0.5 — F(z'):) "
f5(z") = —log(2F (z); — 2)
fe(z') = (max( (2")i) — Z(2"):) "
fr(2") = oftplus(max(Z(x’)i) — Z(z")¢) — log(2)

1F#£t

Derivations taken from Carlini et al. “Towards Evaluating the Robustness of Neural Networks”



Attacking GPDNN

On 1000 MNIST Images: >
* 381 attacks failed s
* Successful attacks have a ?
0.529 greater perturbatic ”
* GPDNN more robust to ?
adversarial attacks ?

%5 : 0 5 10 15 20 25 30

Difference in euclidean distance that L2 optimisation
adversary has to go on GPDNN (SC) compared to NN (SC)



Attacking GPDNN

On 1000 CIFAR10 Images:
e 207 attacks failed

* Greater perturbation
needed to generate

adversarial examples

40
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02 00 0.2 0.4 0.6 0.8

Difference in euclidean distance that L2 optimisation
adversary has to go on GPDNN compared to NN



Attack Transferability

MNIST NN (SC) GPDNN (SC) NN (DC)
Model targeted Error LL Error LL Error LL
Plain MNIST 1 0.0100 -0.039 0.007 -0.038 0.004 -0.021
NN (SC, arch. A) 1.000 -0.718 0.009 -0.056 0.003 -0.014
GPDNN (SC, arch C) 0.031  -0.094 1.000 -0.828 0.011 -0.056
CIFAR NN (DC, arch B) 0.014 -0.047 0.013 -0.067 1.000 -0.725
NN (DC) GPDNN (DC)
Model targeted Error LL Error LL
NN (DC, arch B) 1 -0.788 0.012 -0.08
GPDNN (DC, arch C) 0.016 -0.066 1 -0.935




Transfer Testing

How well GPDNN models notice domain shifts?

MNIST ANOMNIST Semeion SVHN
226 0
574% <4
33 #73F 6
Se/7 ¢




Transfer Testing Results

NN (SC) arch A.

GPDNN (SC)
arch C.

Acc. LL Acc. LL
MNIST 0.990 -0.039 0.993 -0.038
ANOMNIST 0.781 -1.125 0.831 -0.818
Semeion 0.249 -9.609 0.320 -2.841
SVHN 0.304 -4.687 0.276 -2.151




Transfer Testing Results

NN (SC) arch A.

GPDNN (SC)
arch C.

Acc. LL Acc. LL
MNIST 0.990 -0.039 0.993 -0.038
ANOMNIST 0.781 -1.125 0.831 -0.818
Semeion 0.249 -9.609 0.320 -2.841
SVHN 0.304 -4.687 0.276 -2.151




Conclusion

 Explored GPDNN’s robustness in classification
* These hybrid models are competitive to other NN’s
* They have better calibrated uncertainties

* Better at knowing “when they don’t know”



