
Deep Exploration via
Bootstrapped DQN

Ian Osband, Charles Blundell, Alexander Pritzel, Benjamin Van Roy

Presenters : Irene Jiang, Jeremy Ma, Akshay Budhkar

1

Recap on Reinforcement Learning

● Multi-armed bandit problem

○ Stateless

● Contextual bandits

○ Have states, but states are independent

● Reinforcement learning

○ More complicated settings: states with specific

states transitions

● MDPs(Markov Decision Processes)

Environment

Agent

ActionStateReward

Key terms: state(s), action(a),

reward(r), policy(ᷜ), value of a

state(ᬓ)

2

Recap on RL

● On-policy Vs Off-policy:

○ Off-policy: Independent of action taken from the agents. E.g. Q-learning

○ On-policy: Dependent of policy used. E.g. Policy gradient, SARSA

● Some major challenges in RL

○ Off-policy

○ Exploration Vs exploitation

○ Hierarchy

○ Optimization

3

Background on this paper

● Motivation:

○ Deep exploration is often inefficient

○ To measure uncertainty for values calculated by neural network

● Highlights:

○ DQN Vs Q-learning

○ Based on DQN(we will talk more later), bootstrap gives an efficient way to explore deeply.

○ Bootstrap method also provides a way of measuring the uncertainty for this neural network.

4

DQN: Deep Q network

● What is DQN?
○ A neural network to calculate the Q-value for each state-action pair
○ A off-policy technique

● Recap: Q-learning

○ A value table for each state-action pair

● DQN Loss function

5[1]Mnih et al., Playing Atari with Deep Reinforcement Learning [2]https://en.wikipedia.org/wiki/Q-learning

1

2

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://en.wikipedia.org/wiki/Q-learning

DQN: Deep Q network(ctd)

Mnih et al., Playing Atari with Deep Reinforcement Learning

Building dataset

Training the network

6

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf

DQN Modification

● Double DQN

○ Updated the target calculation

● Bootstrap DQN

○ Approximate a distribution of Q-values

○ Natural adaption from Thompson sampling heuristic to RL (more details later)

7

Thompson Sampling in RL

● Review: How is Thompson sampling used in bandits problems?

● Why is RL exploration different from bandit problems?

● How to apply Thompson Sampling in RL exploration?

8

Deep Exploration - What is it?

● Difference between RL exploration and bandits: RL exploration must be deep
● Deep exploration = “planning to learn” or “farsighted exploration”

● Example: The agent has life horizon = 3. What’s the best policy?

9

Deep Exploration - Why is it better?

● Normal RL (DQN) agent can plan to exploit future rewards

● By contrast, RL agent with deep exploration can plan to learn

10

Bootstrapping - What is it?

● Bootstrapping means to approximate the population distribution using a sample distribution
● How to bootstrap?

○ Step 1: Sample population data D with replacement to get {D
1

, D
2

, … , D
n
}

○ Step 2: Train n probabilistic models {M
1

(θ), M
2

(θ), … , M
n

(θ) }, each with training data D
i

○ Step 3: Uniform Randomly choose one model M
k

(θ) from all models {M
1

(θ), M
2

(θ), … , M
n

(θ) }

○ Step 3: Sample from M
k

(θ)

● Naive implementation:

○ Train n different neural networks to realize {M
1

(θ), M
2

(θ), … , M
n

(θ) }

● Really expensive to train n different big neural networks.
○ What is the better solution?

11

Bootstrapped DQN - Implementation

● DQN uses 1 Q function for value estimation

● Bootstrapped DQN uses K bootstrapped heads for value estimation

● Training: Each head is trained on different slice of data

● Execution: Bootstrapped DQN randomly selects 1 head to follow per episode

12

Bootstrapped DQN vs DQN

● DQN fails when there is the need for deep exploration
● Consider the following example:

● The agent starts at s2, has life horizon of N+9 steps. What’s the best policy?

13

Bootstrapped DQN vs DQN - Test time

● None of the other types of DQN could explore as well as bootstrapped DQN when the chain length

is really long!

14

Bootstrapped DQN - Why does it work?

● Problem with epsilon-greedy:
○ Oscillates back and forth and not determined to go to a place

● How does bootstrapped DQN drive deep exploration?
○ It commits to a randomized but internally consistent strategy for an entire episode

● It is just like a team of diverse people in real life.
○ For every episode, we randomly choose a leader in the diverse group

15

Bootstrapped DQN - Exact Algorithm

16

http://www.youtube.com/watch?v=VetjDBIrUJo

Bootstrapped DQN - Methodology

● Hyperparameters:
○ P: How much data sharing do we want among the heads?
○ K: How many heads do we want?

17

Bootstrapped DQN - Test with Stochastic MDP

● Does bootstrapped DQN work well under stochastic situations?

18

Experiments with Atari: Setup
● 49 Atari Games
● Reward Values clipped between -1 and 1
● Conv network

○ Input: 4x84x84 tensor
○ Beyond conv layer - K distinct heads with identical architectures
○ 512 units fully connected + Q-values for each action fully connected
○ ReLu activation presents nonlinearity
○ RMSProp with momentum 0.95, lr = 0.00025, discount = 0.99

● Evaluation = ensemble voting policy

19

Bootstrap DQN at scale

● Varying K
○ More heads = Better performance
○ Even a small value of K has better performance than DQN

20

Gradient Normalization in Bootstrap Heads
● Shared architecture allows training combined network through backpropagation

● Bootstrap without normalization

○ Learns faster, but prone to premature convergence

● Normalization allows bettering “best” by DQN

● Cumulative Reward vs. Best policy

21

Gradient Normalization in Bootstrap Heads

- Bootstrap DQN with no Normalization is better than everything else for cumulative reward

- Bootstrap DQN with normalization is still better than DQN

22

Efficient exploration in Atari

● Bootstrap DQN outperforms DQN for most Atari Games

● Montezuma’s Revenge = Bootstrap DQN reaches some reward after 200m steps

23

Overall Performance

- Bootstrap reaches human level performance faster than DQN

- Improvement Factor = (Time taken by DQN)/(Time taken by Bootstrap DQN)

24

Overall Performance

- Bootstrap DQN’s final score is usually more than DQN

- Bootstrap DQN cumulative rewards are orders of magnitude more than DQN

25

Visualizing Bootstrapped DQN

26

http://www.youtube.com/watch?v=0jvEcC5JvGY&t=7

Closing Remarks on Bootstrap DQN

● Efficient RL Algorithm in complex environments

● Computationally tractable and parallelizable

● Practically combines efficient generalization with exploration for nonlinear value functions

27

Thank you!

28

VIME: Variational Information
Maximizing Exploration
Rein Houthooft*^#, Xi Chen*#, Yan Duan*#, John Schulman*#, Filip De Turck^,
Pieter Abbeel*#

Presented by: Dan Goldberg & Kamyar Ghasemipour

* UC Berkeley, Department of Electrical Engineering and Computer Science
^ Ghent University - imec, Department of Information Technology
OpenAI

The Reinforcement Learning Setup

States Continuous

Actions Continuous

Rewards Bounded

Transition Dynamics

Discount Rate General

Policy

Images from OpenAI

Curiosity Driven Exploration
Model the Transition Dynamics with model parameterized
by Θ (BNN):

From: Bishop, 2006

Curiosity Driven Exploration
Model the Transition Dynamics with model parameterized
by Θ (BNN):

Objective: maximize the reduction in posterior uncertainty over
the parameters:

From: Bishop, 2006

Curiosity Driven Exploration
Model the Transition Dynamics with model parameterized
by Θ (BNN):

Objective: maximize the reduction in posterior uncertainty over
the parameters:

The point: encourage systematic exploration by seeking out
state-action pairs that are relatively unexplored From: Bishop, 2006

Information Gain as Intrinsic Reward

Goal: maximize the reduction in posterior uncertainty over the parameters

Information Gain as Intrinsic Reward

Goal: maximize the reduction in posterior uncertainty over the parameters

Each term in the sum is equal to mutual information between next state
random variable and parameter random variable:

Information Gain as Intrinsic Reward

Goal: maximize the reduction in posterior uncertainty over the parameters

Each term in the sum is equal to mutual information between next state
random variable and parameter random variable:

The KL Divergence term can be interpreted as Information Gain.

Information Gain as Intrinsic Reward
So goal is to maximize the summed expectations of the information gain:

Information Gain as Intrinsic Reward
So goal is to maximize the summed expectations of the information gain:

To do this, add the expectation of information gain at time t as an intrinsic
reward for the RL agent at time t:

Information Gain as Intrinsic Reward
So goal is to maximize the summed expectations of the information gain:

To do this, add the expectation of information gain at time t as an intrinsic
reward for the RL agent at time t:

Information Gain as Intrinsic Reward

Practically, sample a single action and transition (take an on-policy step) to get an
estimate of the mutual information, and add that estimate as an intrinsic reward;
this captures the agent’s surprise at each step:

Information Gain as Intrinsic Reward

Practically, sample a single action and transition (take an on-policy step) to get an
estimate of the mutual information, and add that estimate as an intrinsic reward;
this captures the agent’s surprise at each step:

Information Gain as Intrinsic Reward

Practically, sample a single action and transition (take an on-policy step) to get an
estimate of the mutual information, and add that estimate as an intrinsic reward;
this captures the agent’s surprise at each step:

Information Gain as Intrinsic Reward

Practically, sample a single action and transition (take an on-policy step) to get an
estimate of the mutual information, and add that estimate as an intrinsic reward;
this captures the agent’s surprise at each step:

Information Gain as Intrinsic Reward

Practically, sample a single action and transition (take an on-policy step) to get an
estimate of the mutual information, and add that estimate as an intrinsic reward;
this captures the agent’s surprise at each step:

So the actual reward function looks like this:

Mackay: Information Gain
Active learning for Bayesian interpolation

● Total Information Gain objective function; the same as what we are
considering here (maximizing the KL divergence of posterior from prior).

MacKay, 1992. Information-based objective functions for active data selection.

https://authors.library.caltech.edu/13795/1/MACnc92c.pdf

Mackay: Information Gain
Active learning for Bayesian interpolation

● Total Information Gain objective function; the same as what we are
considering here (maximizing the KL divergence of posterior from prior).

MacKay, 1992. Information-based objective functions for active data selection.

https://authors.library.caltech.edu/13795/1/MACnc92c.pdf

Mackay: Information Gain
Active learning for Bayesian interpolation

● Total Information Gain objective function; the same as what we are
considering here (maximizing the KL divergence of posterior from prior).

MacKay, 1992. Information-based objective functions for active data selection.

https://authors.library.caltech.edu/13795/1/MACnc92c.pdf

Mackay: Information Gain
Active learning for Bayesian interpolation

● Total Information Gain objective function; the same as what we are
considering here (maximizing the KL divergence of posterior from prior).

● He proved a common result of this method to pick the furthest points from
the data (points with maximum variance).

MacKay, 1992. Information-based objective functions for active data selection.

MacKay, 1992:
Bayesian Interpolation

https://authors.library.caltech.edu/13795/1/MACnc92c.pdf

Mackay: Information Gain
Active learning for Bayesian interpolation

● Total Information Gain objective function; the same as what we are
considering here (maximizing the KL divergence of posterior from prior).

● He proved a common result of this method to pick the furthest points from
the data.

● In this case, that is desired - to encourage systematic exploration.

MacKay, 1992. Information-based objective functions for active data selection.

https://authors.library.caltech.edu/13795/1/MACnc92c.pdf

Mackay: Information Gain
Active learning for Bayesian interpolation

● Total Information Gain objective function; the same as what we are
considering here (maximizing the KL divergence of posterior from prior).

● He proved a common result of this method to pick the furthest points from
the data.

● In this case, that is desired - to encourage systematic exploration.
● The main difference is this for VIME exploration is only part of the reward

function - there is still exploitation!

MacKay, 1992. Information-based objective functions for active data selection.

https://authors.library.caltech.edu/13795/1/MACnc92c.pdf

Variational Bayes

Problem: the posterior over parameters is usually intractable.

Variational Bayes

Problem: the posterior over parameters is usually intractable.

Solution: use Variational Bayes to approximate the posterior!

Variational Bayes

The best approximation minimizes KL Divergence

Variational Bayes

The best approximation minimizes KL Divergence

Maximize the Variational Lower Bound to Minimize KL Divergence

Variational Bayes

Variational Lower Bound = (negative) Description Length:

Variational Bayes

Variational Lower Bound = (negative) Description Length:

*Data terms abstracted away

Variational Bayes

Variational Lower Bound = (negative) Description Length:

*Data terms abstracted away

(-) data description length (-) model description length

Graves: Variational Complexity Gain
Curriculum Learning for BNNs

● EXP3.P algorithm for piecewise stationary adversarial bandits

Graves et al., 2017. Automated curriculum learning for neural networks.

https://arxiv.org/abs/1704.03003

Graves: Variational Complexity Gain
Curriculum Learning for BNNs

● EXP3.P algorithm for piecewise stationary adversarial bandits
● Policy is function of importance sampled rewards based on learning progress ν

Graves et al., 2017. Automated curriculum learning for neural networks.

https://arxiv.org/abs/1704.03003

Graves: Variational Complexity Gain
Curriculum Learning for BNNs

● EXP3.P algorithm for piecewise stationary adversarial bandits
● Policy is function of importance sampled rewards based on learning progress ν
● Focus on model complexity (a.k.a. model description length) as opposed to

total description length

Graves et al., 2017. Automated curriculum learning for neural networks.

https://arxiv.org/abs/1704.03003

Graves: Variational Complexity Gain
Curriculum Learning for BNNs

● EXP3.P algorithm for piecewise stationary adversarial bandits
● Policy is function of importance sampled rewards based on learning progress ν
● Focus on model complexity (a.k.a. model description length) as opposed to

total description length

Graves et al., 2017. Automated curriculum learning for neural networks.

https://arxiv.org/abs/1704.03003

Graves: Variational Complexity Gain
Curriculum Learning for BNNs

● EXP3.P algorithm for piecewise stationary adversarial bandits
● Policy is function of importance sampled rewards based on learning progress ν
● Focus on model complexity (a.k.a. model description length) as opposed to

total description length

Graves et al., 2017. Automated curriculum learning for neural networks.

https://arxiv.org/abs/1704.03003

Final Reward Function

VIME

Implementation

Recap

Implementation: Model

BNN weight distribution is chosen to be a fully factorized Gaussian distribution

Optimizing Variational Lower Bound

We have two optimization problems that we care:

1. One to compute:
2. Other to fit the approximate posterior:

Review: Reparametrization Trick

Let z be a continuous random variable:

In some cases it is then possible to write:

Where:

● g is a deterministic mapping parametrized by ᷪ
● ᷧ is a random variable sampled from a simple tractable ditstribution

Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint arXiv:1312.6114 (2013).

Review: Reparametrization Trick

In the case of fully factorized Gaussian BNN:

● ᷧ is sampled from a multivariate Gaussian with 0 mean and identity
covariance

● ᶚ = ᶞ(ᶰ, x) + ᷧ ☉ σ(ᶰ, x)

Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint arXiv:1312.6114 (2013).

Review: Local Reparametrization Trick

● Instead of sampling the weights, sample from the distribution over activations
● More computationally efficient, reduces gradient variance
● In the case of fully factorized Gaussian, this is super simple

Kingma, Diederik P., Tim Salimans, and Max Welling. "Variational dropout and the local reparameterization trick." Advances in
Neural Information Processing Systems. 2015.

Optimizing Variational Lower Bound #2

● q is updated periodically during training

● is sampled from a FIFO history buffer containing tuples of the form
dsdsdsdsds encountered during training

○ Reduces correlation between trajectory samples, making it closer to i.i.d.

Optimizing Variational Lower Bound #1

 Optimized using reparametrization trick & local reparametrization trick:

● Sample values for parameters from q:

● Compute likelihood:

Optimizing Variational Lower Bound

Optimizing Variational Lower Bound

Since we assumed the form to be a fully factorized Gaussian:

Hence we can compute the gradient and Hessian in closed form:

Optimizing Variational Lower Bound

In each optimization iteration, take a single second-order step:

“Because this KL divergence is approximately quadratic in its parameters and the
log-likelihood term can be seen as locally linear compared to this highly curved KL
term, we approximate H by only calculating it for the term KL”

The value of the KL term after the optimization step can be approximated using a
Taylor expansion:

At the origin, the gradient and value of the KL term are zero, hence:

Optimizing Variational Lower Bound

Intrinsic Reward

Last detail:

● Instead of using as the intrinsic reward, it is
divided by the median of the intrinsic reward over the previous k timesteps

● Emphasizes relative difference between KL divergence between samples

Experiments

Sparse Reward Domains

The main domains in which VIME should shine are those in which:

● Rewards are sparse and difficult to get the first rewards
● Naive exploration does not result in any feedback to improve policy

Testing on these domains allows to examine whether VIME is capable of
systematic exploration

Sparse Reward Domains: Examples

Mountain Car Cartpole HalfCheetah

1)http://library.rl-community.org/wiki/Mountain_Car_(Java)
2) https://www.youtube.com/watch?v=46wjA6dqxOM
3) https://gym.openai.com/evaluations/eval_qtOtPrCgS8O9U2sZG7ByQ/

Baselines

● Gaussian control noise
○ Policy model outputs the mean and covariance of a Gaussian

○ Actual action is sampled from this Gaussian

● L2 BNN prediction error as intrinsic reward
○ A model of the environment aims to predict the next state given the current state and action

to be taken (parametrized for example as a neural network)

○ Use the prediction error as an intrinsic reward

○ .
○

1) Duan, Yan, et al. "Benchmarking deep reinforcement learning for continuous control." International Conference on Machine
Learning. 2016.
2) Stadie, Bradly C., Sergey Levine, and Pieter Abbeel. "Incentivizing exploration in reinforcement learning with deep predictive
models." arXiv preprint arXiv:1507.00814 (2015).

Results

TRPO used as the RL algorithm is all experiments:

● Naive (Gaussian noise) exploration almost never reaches the goal
● L2 does not perform well either
● VIME is very significantly more successful

Curiosity drives exploration even in the absense of any initial reward

SwimmerGather task:

● Very difficult hierarchical task
● Need to learn complex locomotion

patterns before any progress can be made
● In a benchmark paper, none of the naive

exploration strategies made any progress
on this task

More Difficult Task: SwimmerGather

https://www.youtube.com/watch?v=w78kFy4x8ck

http://www.youtube.com/watch?v=w78kFy4x8ck

More Difficult Task: SwimmerGather

● Yet, VIME leads the agent to acquire complex motion primitives without any
reward from the environment

Comparing VIME with different RL methods:

TRPO

ERWR

REINFORCE

● REINFORCE & ERWR suffer from premature convergence to suboptimal policies

Plot of state visitations for MountainCar Task:

● Blue: Gaussian control noise
● Red: VIME

VIME has a more diffused visitation pattern that
explores more efficiently and reaches goals more
quickly

VIME’s Exploration Behaviour:

Exploration Exploitation Trade-off

● By adjusting the value of n, we can tune how much emphasis we are putting
on exploration:
○ Too high: will only explore and not care about the rewards

○ Too low: algorithm reduces to Gaussian control noise which does no perform well on many

difficult tasks

Conclusion

● VIME represents exploration as information gain about the parameters of a
dynamics model:

● We do this with a good (easy) choice of approximating distribution q:

● VIME is able to improve exploration for different RL algorithms, converge to
better optima, and can solve very difficult tasks such as SwimmerGather

Optimizing Variational Lower Bound

Modification of variational lower bound:

● We can assume at timestep t, the approximate posterior q at step t-1 is a good
prior since q is not updated very regularly (as we will see).

PILCO: A Model-Based and
Data-Efficient Approach to Policy Search

Authors:
Marc Peter Deisenroth, Carl Edward Rasmussen

Presenters:
Shun Liao, Enes Parildi, Kavitha Mekala

Background + Dynamic
Model

Presenter: Shun LIAO

Model Based RL
Simple Definitions:

1. S is the state/observation space of an
environment

2. A is the set of actions the agent can
choose

3. R(s,a) is a function that returns the reward
received for taking action a in state s

4. π(a|s) is the policy needed to learn for
optimizing the expected rewarded

5. T(s′|s,a) is a transition probability function
6. Learning and using T(s′|s,a) explicitly for

policy search is model-based

Overview of Model Based RL

Optimize π (a|s)

Eg. Backprop through model

Estimate T(s′|s,a) based
on collected samples

Eg. Supervised Learning

Advantage and Disadvantages of Model-Based
+ Easy to collect data

+ Possibility to transfer across tasks

+ Typically require a smaller quantity of
data

- Dynamics models don’t optimize for task
performance

- Sometimes model is harder to learn than
a policy

- Often need assumptions to learn (eg.
continuity)

Main Contributions of PILCO
Sometimes model is harder to learn than a policy:

one difficulty is that the model is highly biased

PILCO Solutions:

Reducing model bias by learning a
probabilistic dynamics model and
explicitly incorporating model
uncertainty into long-term planning

1. probabilistic dynamics model with
model uncertainty

2. Incorporating uncertainty into
long-term planning

Main Contributions of PILCO

Overflow of their algorithm

1. Dynamics Model Learning

Policy Evaluation
Presenter: Enes Parildi

2. Policy Evaluation

Evaluating this expected return of policy requires all distributions

To get these distributions we should obtain first and propagate this distribution
through GP model

We assume that is gaussian and approximate its distribution using exact moment
matching

After propagating through posterior GP model , the equation that gives
predictive distribution of state difference is

2. Policy Evaluation(cont)

Lower Right Panel: The
input distribution

Upper Right Panel:
Posterior GP model

Upper Left Panel:Blue
curve is approximated
gaussian with exact mean
and variance of green area.

2. Policy Evaluation(cont)

If we find and we can define as we already know and

2.1 Mean Prediction
Using law of iterated expectations, for target dimensions a = 1,…,D, we obtain the

mean prediction dimension by dimension

2.1 Mean Prediction(cont)

 O is obtained from

2.2 Covariance Matrix of the Prediction

 From Gaussian multiplications and integration, we obtain the entries for

After covariance and mean prediction we can get expected return of policy by summing
the expectations calculated like this

2.3 Analytic Gradients for Policy Improvement

 We obtain the derivative of by repeated application of the chain-rule:
 Swap the order or differentiating and summing with we obtain

 Applying chain rule, we obtain

2.3 Analytic Gradients for Policy Improvement (cont)
● Here , we focus on

● Since is known from time step is computed from

 Chain-rule to the equations at the part mean prediction and we conclude with

● The first derivative terms above can be obtained from equations in mean prediction part
and the second ones depend on policy parametrization.

● Analytic gradient computation of is much more efficient than estimating policy
gradients through sampling.

● After getting using this procedure , policy parameters can be updated with
 CG or L-BFGS algorithm

Experiments + Result
Presenter: Kavitha Mekala

3. Experiments and Results

● PILCO's success in efficiently learning challenging control tasks, including both standard
benchmark problems and high-dimensional control problems.

● PILCO learns completely from scratch by following the steps detailed in the Alg. 1.

● The results discussed in the following are typical, that is they do neither represent best
nor worst cases.

3.1 Cart-Pole Swing-up (video)
PILCO was applied to learning to control a real cart-pole system, see Fig 3.

● Cart with mass 0.7 kg running on a track and a freely swinging pendulum of mass 0.325 kg attached to the cart.
● The objective was to learn a controller to swing the pendulum up and to balance it in the inverted position in the middle

of the track. A linear controller is not capable of doing this.
● The learned state-feedback controller was a nonlinear RBF network that is

● PILCO successfully learned a sufficiently good dynamics model and controller for this standard benchmark problem fully
automatically in only a handful of trials and a total of 17.5 s.

 Fig 3. Real cart-pole system. Snapshots of a controlled trajectory of 20 s length after having learned the task. To solve the swing-up plus balancing,
 PILCO required only 17.5 s of interaction with the physical system.

https://www.youtube.com/watch?v=XiigTGKZfks

3.2. Cart-Double-Pendulum Swing-up

PILCO learning a dynamics model and a controller for the cart-double-pendulum swing-up.

● The objective was to learn the policy to swing the double pendulum up to the inverted position
and to balance it with the cart at the start location x.

● A standard control approach to solve the cart-double pendulum task is to design two separate
controllers, one for the swing up and one linear controller for the balancing task.

● PILCO fully automatically learned a dynamics model and single nonlinear RBF controller,
 with n = 200 and to jointly solve the swing-up and balancing. It required about 20-30
 trials corresponding to an interaction time of about 60s-90s.

3.3 Unicycle Riding
● They applied PILCO to riding a 5-DoF unicycle in a realistic simulation of the one shown in the

Fig.4(a).
● The goal was to ride the unicycle, to prevent it from failing. To solve the balancing task, they used

linear controller
● PILCO required about 20 trials to learn the dynamics models and a controller that keeps the

unicycle upright.

3.4 Data Efficiency
Tab. 1. Summarizes the results presented in the paper.

● For each task, the dimensionality of the state and parameter spaces are listed together with the
required number of trials and the corresponding total interaction time.

● The table shows that PILCO can efficiently find good policies even in high dimensions that depends on
both the complexity of the dynamics model and the controller to be learned.

4. Discussion

● Trial-and-error learning leads to few limitations in the discovered policy: PILCO is not an
optimal control method but it finds a solution for the task.

● PILCO exploits analytic gradients of an approximation to the expected return for indirect
policy search.

● PILCO obtains gradients with value zero and gets stuck in a local optimum, although it is
relatively robust against the choice of the width of the cost in the above equations, there is no
guarantee that PILCO always learns with a 0-1 cost.

● One of the PILCO’s key benefits is the reduction of model bias by explicitly incorporating
model uncertainty into planning and control.

● Moment matching approximation used for approximate inference is typically a conservative
approximation.

4. Conclusion (cont)

● The probabilistic dynamics model was crucial to PILCO’s learning success.
● Learning from scratch with this deterministic model was unsuccessful because of the missing

representation of model uncertainty.
● Since the initial training set for the dynamics model did not contain states close to the target

state, the predictive model was overconfident during planning.
● They introduced PILCO, a practical model-based policy search method using analytic

gradients for the policy improvement.
● PILCO advances state-of-the-art RL method in terms of learning speed by at least an order of

magnitude
● Results in the paper suggests using probabilistic dynamics models for planning and policy

learning to account for model uncertainties in the small-sample case, even if the underlying
system is deterministic.

Q & A

Learning and Policy Search in Stochastic Dynamical
Systems with Bayesian Neural Networks

Presenters: Tianbao Li, Wei Yu, Yichao Lu, Yatu Zhang

Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, Steffen Udluft (2016)

Overview

● GOAL: use model-based reinforcement learning to search policy in stochastic
dynamical system

● DIFFICULTY: robust learning of Bayesian Neural Networks with stochastic
input variables

● METHOD: approximate by α-divergence, train by gradient-based policy search
● RESULT: better result on real-world scenarios including industrial benchmark

(better than Variational Bayes)

Background & Review

Bayesian Neural Networks

● Use distributions to represent parameters
● Give prior distribution on weights P(w)

○ Usually Gaussian priors
○ One of the randomness

● Learn posterior distribution P(w | D)

Figure source: Blundell, C. et al. Weight Uncertainty in Neural Networks. ICML 2015.

Notation Definition

● Data D = {xn, yn}N

○ feature xn∈ℝD (N * D) target yn∈ℝK (N * K)
○ yn = f(xn, zn; W) + ᶗn

● Network f
○ L layers
○ Vl hidden units in layer l

● Weight W:
○ W = {Wl}

L

○ Vl * (Vl + 1) matrix +1 for per-layer bias

Stochastic Dynamical System

● Originate: stochastic noise in real-world scenarios
● Randomness:

○ Stochastic input z ∼ ᮂ (0 , ᶕ)

■ Capture unobserved stochastic features that can affect the network's output
○ Noise in dynamics ᶗ ∼ ᮂ (0 , ᵑ)

■ Generate a predictive distribution in form of Gaussian mixture
○ Uncertainty in weights W ∼ ᮂ (0 , ᶝ)

■ Bring uncertainty in weights for better prediction
■ Regularization

Reinforcement Learning Model on BNN

● Likelihood

● Prior

● Posterior (given by Bayes rule)

Reinforcement Learning Model on BNN

● Prediction

● Intractable -> use approximations (variational method)

Variational Bayes

● A typical way
● GOAL: approximate a complex Bayesian network by a simpler network with

minimum information divergence
○ Analytical approximation to posterior (Monte Carlo sampling)
○ Derive a lower bound for marginal likelihood

● TODO: select simple network q to surrogate complex network p
● TODO’: select distribution q(z) to minimize dissimilarity d(q;p)
● Dissimilarity measure: Kullback Leibler divergence (KL-divergence)

● Generalization of KL-divergence -> α-divergence

α-Divergence

● A generalized version of KL-divergence.

○

● Properties

○ Convex in q for α > 1; Nonnegative;

○ = 0, when p = q, e.g. When α = 0.5, Hellinger Distance

○ When α goes to 0 or 1, it is equivalent to KL-divergence

■ Interchange of limit and integral and use L'Hospital’s rule

α-Divergence vs. Variational Bayes

BNN vs. Gaussian Process

● GP
○ Work extremely well with small amounts of low dimensional data;(hard to scale)
○ Handling of input uncertainty can be done analytically;
○ Sampling dynamics for approximation is infeasible;(the abundance of local optima)
○ No temporal correlation in model uncertainty between successive state transitions.(Markov

process)

● BNN
○ Overfitting;
○ Express output model uncertainty (Compared with NN);
○ Sampling dynamics is good for BNN;
○ Recurrent neural network.

❏ Ref: Gal, Y., McAllister, R.T. and Rasmussen, C.E., 2016, April. Improving PILCO with bayesian neural network dynamics
models. In Data-Efficient Machine Learning workshop (Vol. 951, p. 2016).

Minimization

● Minimization
○ Similarly, we approximate the posterior distribution with the factorized Gaussian distribution

● α-Divergence in this case
○
○ Direct minimization is infeasible, instead, we optimize an energy function whose minimizer

corresponds to a local minimization of α-divergences, with one α-divergence for each of the N
likelihood factors.

○ We can represent q as
○ f is Gaussian factor that approximates the likelihood factor
○ Black-Box α-Divergence Minimization

Energy function

● Energy function
○

log Zq is the logarithm of the normalization constant of the exponential Gaussian form of q

○ Minimization of Energy function agrees with local minimization of α-Divergence.

● Training
○ The scalable optimization is done in practice by using stochastic gradient descent.

Experiments: Wet Chicken

Wet Chicken Description

- A canoeist paddles in a 2D river starting at the origin (0,0), with
position given by .

- The river has a waterfall at . The canoeist has to start over at
the origin after falling into the waterfall

- The canoeist performs an action that represents
the direction and magnitude of paddling at each time step t

- At each time step t, The canoeist receives a reward

(l, 0)

(0, w)

(l, w)

(0, 0)

Wet Chicken Description

- However, the system has stochastic turbulences and drift
that is dependent on horizontal position , , where:

- Canoeist’s new position under this dynamics is:

where,

(l, 0)

(0, w)

(l, w)

(0, 0)

Bi-Modality and Heteroskedasticity

● The transition dynamics of this system exhibit complex stochastic patterns
● Bi-modality: As canoeist moves closer to the waterfall, the predictive

distribution for the next state becomes increasingly bi-modal
● Heteroskedasticity: noise variance is different depending on current state
● Challenging for traditional model-based reinforcement learning methods.
● Need to tackle with models that can capture both bi-modality and

heteroskedasticity patterns in the predictive distribution (BNN optimized using
alpha divergence).

Bi-Modality and Heteroskedasticity - Toy Dataset

Bi-Modal

Heteroskedastic

Wet Chicken Results

Wet Chicken Results

Experiments: Industrial
Applications

Results

Results

Conclusion

Conclusion

● GOAL: use model-based reinforcement learning to search policy in stochastic
dynamical system

● DIFFICULTY: robust learning of Bayesian Neural Networks with stochastic
input

● METHOD: approximate by α-divergence, train by gradient-based policy search
● RESULT: Obtained state-of-the-art policies obtained in industrial problems, with

rollouts sampled from the BNN model.

