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Recap on Reinforcement Learning

e Multi-armed bandit problem
o Stateless
e Contextual bandits
o Have states, but states are independent
e Reinforcement learning
o  More complicated settings: states with specific
states transitions
e MDPs(Markov Decision Processes)

Environment J

State

Reward Action

Key terms: state(s), action(a),
reward(r), policy(z), value of a
state(y)



Recap on RL

e On-policy Vs Off-policy:
o  Off-policy: Independent of action taken from the agents. E.g. Q-learning
o  On-policy: Dependent of policy used. E.g. Policy gradient, SARSA

e Some major challenges in RL

Off-policy

Exploration Vs exploitation

Hierarchy

Optimization
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Background on this paper

e Motivation:
o Deep exploration is often inefficient
o Tomeasure uncertainty for values calculated by neural network
e Highlights:
o DQNVsQ-learning
o Based on DQN(we will talk more later), bootstrap gives an efficient way to explore deeply.
o Bootstrap method also provides a way of measuring the uncertainty for this neural network.



DQN: Deep Q network

e Whatis DQN?
o  Aneural network to calculate the Q-value for each state-action pair
o  Aoff-policy technique

e Recap: Q-learning
o  Avalue table for each state-action pair
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e DQN Loss function
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[1]Mnih et al.. Playing Atari with Deep Reinforcement Learning [2]https://en.wikipedia.org/wiki/Q-learning



https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://en.wikipedia.org/wiki/Q-learning

DQN: Deep Q network(ctd)

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity [V
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence 31 = {z1} and preprocessed sequenced ¢1 = ¢(s1)
fort=1,Tdo
With probability € select a random action a;
otherwise select a; = max, @*(¢(s:), a;0)
Execute action a; in emulator and observe reward r;, and image z;;;
Set 8411 = 84, a4, 2111 and preprocess ¢y 11 = P(8111)
Store transition (¢, a;, s, ¢p+1) iIn D
Sample random niinibatch of transitions (¢;, a;, 7, @;11) from D
Sef 1/ — { (i for terminal ¢; ¢
Yi =\ r; +~ymaxe Q(¢jr1,0a';6) for non-terminal ¢; 44
Perform a gradient descent step on (y; — Q(¢;, a;; 6))2 according to equation 3
end for
end for

Building dataset

Training the network

Mnih et al., Playing Atari with Deep Reinforcement Learning



https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf

DQN Modification

e Double DOQN
o Updated the target calculation

ye = e+ ymax Q(Pri1, arg max Q" (dri1, ar; 0); 0)

e Bootstrap DQN
o  Approximate a distribution of Q-values
o Natural adaption from Thompson sampling heuristic to RL (more details later)



Thompson Sampling in RL

e Review: How is Thompson sampling used in bandits problems?
e Why is RL exploration different from bandit problems?
e How toapply Thompson Sampling in RL exploration?

multi-armed bandits contextual bandits small, finite MDPs
(1-step stateless (1-step RL problems) (e.g., tractable planning,
RL problems) model-based RL setting)

large, infinite MDPs,
continuous spaces

theoretically tractable

theoretically intractable



Deep Exploration - What is it?

e Difference between RL exploration and bandits: RL exploration must be deep
e Deep exploration = “planning to learn” or “farsighted exploration”
e Example: The agent has life horizon = 3. What’s the best policy?
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Deep Exploration - Why is it better?

e Normal RL (DQN) agent can plan to exploit future rewards
e By contrast, RL agent with deep exploration can plan to learn
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(a) Bandit algorithm (b) RL+dithering (¢) RL+shallow explore

(d) RL+deep explore
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Bootstrapping - What is it?

e Bootstrapping means to approximate the population distribution using a sample distribution
e How to bootstrap?

o  Step 1: Sample population data D with replacement to get{D,,D.,, ..., D }

o Step 2: Train n probabilistic models {Ml(e), Mz(e), o Mn(e) }, each with training data D,

o  Step 3: Uniform Randomly choose one model Mk(e) from all models {M, (8), M_(0), ..., Mn(e) }

o  Step 3:Sample from Mk(e)
e Naive implementation:

o  Train ndifferent neural networks to realize {Ml(e), M

1(68), My

,(8),....,M_(8)}
e Really expensive to train n different big neural networks.

o What is the better solution?



Bootstrapped DQN - Implementation

DQN uses 1 Q function for value estimation
Bootstrapped DQN uses K bootstrapped heads for value estimation

Training: Each head is trained on different slice of data
Execution: Bootstrapped DQN randomly selects 1 head to follow per episode

Shared ConvNet

Input frame
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Bootstrapped DQN vs DQN

e DAQN fails when there is the need for deep exploration
e Consider the following example:
e Theagentstarts at s2, has life horizon of N+9 steps. What’s the best policy?

o T
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Bootstrapped DQN vs DQN - Test time

None of the other types of DQN could explore as well as bootstrapped DQN when the chain length

is really long!
= > 2000 episodes = < 2000 episodes
Bootstrapped DQN DQN Ensemble DQN Thompson DQN
© 2000 -
E 1500 -
=N
.5 1000 -
5 exi
a-) "00 i " g = h L]
= et AP oroe E -
0-
25 50 75 100 25 50 75 100 25 50 75 100 25 50

Chain length
Figure 4: Only Bootstrapped DQN demonstrates deep exploration.
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Bootstrapped DQN - Why does it work?

e Problem with epsilon-greedy:

o  Oscillates back and forth and not determined to go to a place
e How does bootstrapped DQN drive deep exploration?

o It commits to a randomized but internally consistent strategy for an entire episode
e ltisjustlike ateam of diverse people inreal life.

o  Forevery episode, we randomly choose a leader in the diverse group
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Bootstrapped DQN - Exact Algorithm

Algorithm 1 Bootstrapped DQN

1: Input: Value function networks () with K outputs {Qk}{};l. Masking distribution M.
2: Let B be a replay buffer storing experience for training.

3: for each episode do

4: Obtain initial state from environment sy

57 Pick a value function to act using k ~ Uniform{1,..., K}

6: for step t = 1, ... until end of episode do

T Pick an action according to a; € argmax, Qp(s¢, a)

8: Receive state s;.j and reward 7, from environment, having taking action a,
9: Sample bootstrap mask my; ~ M
10: Add (s¢,a¢, 7101, Se41,m¢) to replay buffer B
T end for
12: end for
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http://www.youtube.com/watch?v=VetjDBIrUJo

Bootstrapped DQN - Methodology

e Hyperparameters:
o  P: How much data sharing do we want among the heads?
o K: How many heads do we want?

+ 2 2000 episodes * < 2000 episodes

Bootstrapped DQN Bootstrapped DON Bootstrapped DOQN
(Slaes) (p=0.5, K=10) (p=0.5, K=20)
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Bootstrapped DQN - Test with Stochastic MDP

e Does bootstrapped DQN work well under stochastic situations?

Algorithm
0.5 0.5 i ~ UCRL2
Y i T e-greedy
| 0.5 0.5 0.5 0.5 0.5 1 ) Bw[suapped DQN
b et e s y 2
. a - A - A - ~a . “a = PSRL
bovas et Sen e R v owi Mo e 'c—'s\l';\_lil-
- .6‘ =
g 500
m
Figure 14: A stochastic MDP that requires deep exploration. iy ] _
4] 500 1000 1 500 2000
Episode
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Experiments with Atari: Setup

o 49 Atari Games

e Reward Values clipped between -1 and 1 ;‘DD i
e Conv network E
o Input: 4x84x84 tensor Df ] @
o  Beyond conv layer - K distinct heads with identical architectures Iy S/
o 512 units fully connected + Q-values for each action fully connected ‘DD Q @ﬂ
o  Relu activation presents nonlinearity
o RMSProp with momentum 0.95, Ir = 0.00025, discount = 0.99 \\DD E

e Evaluation = ensemble voting policy

e o o
e o e
s e oo
<
3
o] (@] (@] (e] [e] (@

I}D D
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Bootstrap DQN at scale

e VaryingK
o  More heads = Better performance
o Even a small value of K has better performance than DQN

E S

:

Algorithm
— DQN
Bootstrapped DQN, K=2
Bootstrapped DQN, K=5
4000 - Bootstrapped DQN, K=10
— Bootstrapped DQN, K=20

2000 -

Cumulative rewards (Breakout)

—///

0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07 2.5e+07
Frames

0-
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Gradient Normalization in Bootstrap Heads

Shared architecture allows training combined network through backpropagation

Algorithm
— DQN
Bootstrapped DQN, Norm=0.1
Bootstrapped DQN, Norm=0.32
15000 - == Bootstrapped DQN, Norm=1

Bootstrap without normalization :

20000 -

o Learns faster, but prone to premature convergence

0000

Normalization allows bettering “best” by DQN

5000-

Cumulative Reward vs. Best policy

Average evaluation reward on Beam Rider

0-

0e+08 1.5¢+08 2.0e+08

0.0e+00 ;HL“U)’ 1
Number of training frames

Figure 17: Normalization fights premature convergence.
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Gradient Normalization in Bootstrap Heads

- Bootstrap DQN with no Normalization is better than everything else for cumulative reward
- Bootstrap DQN with normalization is still better than DQN

Algurithin
DN
Bootstrapped DN, Normad). |

g Aw - By DO N
st vet] a B D
£ Bootstrapped DQY, Norm=0.32 H
= — Bootstrapped DN, Norm=1 £
3 Numbser of training frames
Number of training frames .

* (b) Even over 200m frames the importance
(a) Normalization does not help cumulative of exploration dominates the effects of an
rewards. inferior final policy.

Figure 18: Planning, learning and exploration in RL.
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Efficient exploration in Atari

e Bootstrap DQN outperforms DQN for most Atari Games
e Montezuma’s Revenge = Bootstrap DQN reaches some reward after 200m steps

Breakout Frostbite
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Figure 6: Bootstrapped DQN drives more efficient exploration.



Overall Performance

- Bootstrap reaches human level performance faster than DQN
- Improvement Factor = (Time taken by DQN)/(Time taken by Bootstrap DQN)
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Flgure T Bootstra.pped DQN rea.ches human performance faster than DQN.



Overall Performance

- Bootstrap DQN’s final score is usually more than DQN
- Bootstrap DQN cumulative rewards are orders of magnitude more than DQN
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Visualizing Bootstrapped DQN

26


http://www.youtube.com/watch?v=0jvEcC5JvGY&t=7

Closing Remarks on Bootstrap DQN

e Efficient RL Algorithm in complex environments
e Computationally tractable and parallelizable

e Practically combines efficient generalization with exploration for nonlinear value functions

27



Thank you!
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The Reinforcement Learning Setup

States

Actions

Rewards

Transition Dynamics

Discount Rate

.

Images from OpenAl

Policy
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P:Sx Ax S Rsg
v € (0,1]
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Continuous

Continuous

Bounded

St4+1 ™~ P(SL—|—1|SE: Gt)
General

a; ~ To(a]s;)




Curiosity Driven Exploration

Model the Transition Dynamics with model parameterized
by © (BNN):

p(8¢+1|8¢,a¢;8), with prior over parameters p(8)

probabilities

probabilities

0.5

H = 3.09

0.5

0.25

i

From: Bishop, 2006




Curiosity Driven Exploration

Model the Transition Dynamics with model parameterized
by © (BNN):

0.25

probabilities

p(8¢+1|8¢,a¢;8), with prior over parameters p(8)

Objective: maximize the reduction in posterior uncertainty over

the parameters:

Z(H(Q|Ehﬂt) — H(e|35+1,£hﬂt)) E . ‘]’m‘k
£

probabilities

From: Bishop, 2006




Curiosity Driven Exploration

Model the Transition Dynamics with model parameterized
by © (BNN):

0.25

probabilities

p(8¢+1|8¢,a¢;8), with prior over parameters p(8)

Objective: maximize the reduction in posterior uncertainty over

the parameters:
> (H(Ol&, ar) — H(O|s¢11,£¢,ar)) ‘]’mL
£
The point: encourage systematic exploration by seeking out '

state-action pairs that are relatively unexplored From: Bishop, 2006




Information Gain as Intrinsic Reward

Goal: maximize the reduction in posterior uncertainty over the parameters

Z(H(e|£h ﬂi) - H(@|S;+1, &1 {15))

L




Information Gain as Intrinsic Reward

Goal: maximize the reduction in posterior uncertainty over the parameters

Z(H(e|£h ﬂi) - H(@|S;+1, &1 {15))

L

Each term in the sum is equal to mutual information between next state
random variable and parameter random variable:

I(S1415 08, at) = Es,  wP([s,.0,) [Dki [P(O1Ers a5 8141)[1p(6]€: )]




Information Gain as Intrinsic Reward

Goal: maximize the reduction in posterior uncertainty over the parameters

Z(H(e|£h ﬂi) - H(@|S;+1, &1 {15))

L

Each term in the sum is equal to mutual information between next state
random variable and parameter random variable:

1(834_1;@\&,,&’5) — E5t+l’”P('|5t=“t) [

The term can be interpreted as




Information Gain as Intrinsic Reward

So goal is to maximize the summed expectations of the information gain:

D Eainp(lsa) [DRLPO1E:, at se41)[P(BIEL)]

i




Information Gain as Intrinsic Reward

So goal is to maximize the summed expectations of the information gain:

D Eainp(lsa) [DRLPO1E:, at se41)[P(BIEL)]

To do this, add the expectation of information gain at time t as an intrinsic
reward for the RL agent at time t:




Information Gain as Intrinsic Reward

So goal is to maximize the summed expectations of the information gain:

D Eainp(lsa) [DRLPO1E:, at se41)[P(BIEL)]

To do this, add the expectation of information gain at time t as an intrinsic
reward for the RL agent at time t:

:-“"(3;, aty St41) = T8¢, a8) + HEIJ{St_g_ﬂSt,m:I DL [p(0)&:, at, se41)|[p(8]€:)]]

where 1 is a hyperparameter




Information Gain as Intrinsic Reward

Practically, sample a single action and transition (take an on-policy step) to get an
estimate of the mutual information, and add that estimate as an intrinsic reward;

this captures the agent’s surprise at each step:




Information Gain as Intrinsic Reward

Practically, sample a single action and transition (take an on-policy step) to get an
estimate of the mutual information, and add that estimate as an intrinsic reward;

this captures the agent’s surprise at each step:

ar ~ To(at|st)




Information Gain as Intrinsic Reward

Practically, sample a single action and transition (take an on-policy step) to get an
estimate of the mutual information, and add that estimate as an intrinsic reward;

this captures the agent’s surprise at each step:

at ~ To(at|st) t41 ~ P(st11)8:, a)




Information Gain as Intrinsic Reward

Practically, sample a single action and transition (take an on-policy step) to get an
estimate of the mutual information, and add that estimate as an intrinsic reward;

this captures the agent’s surprise at each step:

as ~ Tola:|st) St+1 ~ P(8t+1|5t, at) Dy [p(0|&:, at, 8¢+1)||p(0]&:)]




Information Gain as Intrinsic Reward

Practically, sample a single action and transition (take an on-policy step) to get an
estimate of the mutual information, and add that estimate as an intrinsic reward;

this captures the agent’s surprise at each step:
(g ~ To (] St) St41 ~ P(8¢41]st, at) Dy [p(B)€:, ae, s¢41)||p(6]€e)]

So the actual reward function looks like this:

’rf(st; at, Se+1) = 7(5¢, ﬂrt) + nDkL [p(f}\ﬁt; at, 5t+1)HP(9|ft)]




Mackay: Information Gain

Active learning for Bayesian interpolation

e Total Information Gain objective function; the same as what we are
considering here (maximizing the KL divergence of posterior from prior).

P(w)
P(w | t)

AS = S5y ~ Sn+1 G’ /dkawl )log

MacKay, 1992. Information-based objective functions for active data selection.



https://authors.library.caltech.edu/13795/1/MACnc92c.pdf

Mackay: Information Gain

Active learning for Bayesian interpolation

e Total Information Gain objective function; the same as what we are
considering here (maximizing the KL divergence of posterior from prior).

P(w)
P(w | t)

AS = S5y ~ Sn+1 G’ /dkawl )log

_k 1 2 -1
§= 5(1 + log2m) + Elog (m det A )

MacKay, 1992. Information-based objective functions for active data selection.
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Mackay: Information Gain

Active learning for Bayesian interpolation

e Total Information Gain objective function; the same as what we are
considering here (maximizing the KL divergence of posterior from prior).

P(w)
P(w | t)

AS = S5y ~ Sn+1 G’ /dkawl )log

S = 2(1 + log 27) + %log (mZ det A") Total information gain = %Alog (m"a det A)

= %log{’. + pg'A'g)

MacKay, 1992. Information-based objective functions for active data selection.
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Mackay: Information Gain

Active learning for Bayesian interpolation

e Total Information Gain objective function; the same as what we are

considering here (maximizing the KL divergence of posterior from prior).

He proved a common result of this method to pick the furthest points from
the data (points with maximum variance).

MacKay, 1992:
Bayesian Interpolation

%log(l + fg'A'g)

MacKay, 1992. Information-based objective functions for active data selection.
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Mackay: Information Gain

Active learning for Bayesian interpolation

e Total Information Gain objective function; the same as what we are
considering here (maximizing the KL divergence of posterior from prior).

e He proved acommon result of this method to pick the furthest points from
the data.

e Inthiscase,thatis desired - to encourage systematic exploration.

%lag(l + fg'A'g)

MacKay, 1992. Information-based objective functions for active data selection.
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Mackay: Information Gain

Active learning for Bayesian interpolation

e Total Information Gain objective function; the same as what we are
considering here (maximizing the KL divergence of posterior from prior).

e He proved acommon result of this method to pick the furthest points from
the data.

e Inthiscase,thatis desired - to encourage systematic exploration.

e The maindifference is this for VIME exploration is only part of the reward
function - there is still exploitation!

%lag(l + fg'A'g)

MacKay, 1992. Information-based objective functions for active data selection.
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Variational Bayes

Problem: the posterior over parameters is usually intractable.

p(0|&)p(st+1/&t, a5 0)
p(st+1/&e, at) |

p(3|&;, at, St—l—l) —

Tf(sha't: St.+1) = T‘(S-m ﬂt) + nDkL [P(9|<ff,; at, SL-H)HP(G\&)]




Variational Bayes

Problem: the posterior over parameters is usually intractable.

p(0|&)p(st+1/&t, a5 0) |

0\&:, ae, S =
p( |£t t t—l—l) p(5t+1‘ft,ﬂt)

Solution: use Variational Bayes to approximate the posterior!

46(0) = q(0; ¢1) =~ p(0)&s, as, Sp41)




Variational Bayes

The best approximation minimizes KL Divergence

DKL [Q(H; ¢t) \ ‘p(ﬂgh at, St-i-l)]




Variational Bayes

The best approximation minimizes KL Divergence

Dy [q(0; 9¢)||p(6|&:, at, S41)]

Maximize the Variational Lower Bound to Minimize KL Divergence

log p(&:, a, se+1) = Dk [a(8; ¢:)||p(6]&:, as, SHI)]-I_/(&) q(0; ¢) log p(e, g}}:;;tﬂ)




Variational Bayes

Variational Lower Bound = (negative) Description Length:

Lq(0; ¢); &, at, se41] = Egg(ye) logp(se111&t, as, 0)] — Do [a(6; ¢)|[p(0)]




Variational Bayes

Variational Lower Bound = (negative) Description Length:

L{q(0; ¢), D] = Egrq(.;¢) [log p(D|0)] — Dxv[q(0; ¢) || p(0)]

*Data terms abstracted away




Variational Bayes

Variational Lower Bound = (negative) Description Length:

L{q(0; ¢), D] = Eg~g(;0) log p(D|6)] — Dxv[q(6; ¢) || p(0)]

(-) data description length (-) model description length

*Data terms abstracted away




Graves: Variational Complexity Gain

Curriculum Learning for BNNs

« EXP3.Palgorithm for piecewise stationary adversarial bandits

Graves et al., 2017. Automated curriculum learning for neural networks.
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Graves: Variational Complexity Gain

Curriculum Learning for BNNs

. EXP3.Palgorithm for piecewise stationary adversarial bandits
« Policy is function of importance sampled rewards based on learning progress v

Graves et al., 2017. Automated curriculum learning for neural networks.
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Graves: Variational Complexity Gain

Curriculum Learning for BNNs

. EXP3.Palgorithm for piecewise stationary adversarial bandits

« Policy is function of importance sampled rewards based on learning progress v

« Focus on model complexity (a.k.a. model description length) as opposed to
total description length

Graves et al., 2017. Automated curriculum learning for neural networks.
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Graves: Variational Complexity Gain

Curriculum Learning for BNNs

. EXP3.Palgorithm for piecewise stationary adversarial bandits

« Policy is function of importance sampled rewards based on learning progress v

« Focus on model complexity (a.k.a. model description length) as opposed to
total description length

vvea = Dk [a(0; ¢i11)||p(0)] — Do [a(0; é¢)||p(6)]

Graves et al., 2017. Automated curriculum learning for neural networks.
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Graves: Variational Complexity Gain

Curriculum Learning for BNNs

. EXP3.Palgorithm for piecewise stationary adversarial bandits

« Policy is function of importance sampled rewards based on learning progress v

« Focus on model complexity (a.k.a. model description length) as opposed to
total description length

vvoe = Dy [(posterior),.1|(prior)] — Dy [(posterior), || (prior))

Graves et al., 2017. Automated curriculum learning for neural networks.
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VIME

Final Reward Function

r' (8¢, a1, St41) = (8¢, at) + NDxr[q(0; Pe+1) || q(6; ¢1)]




Implementation




Recap

= I(St—i—l; '9|5u ﬂt) = ]Est_H-uP{-|3hai} [DHL [P(H\fts Qi 5t+1)|\P(9\ftm

= 7' (8¢, aty St+1) = 7(8t, ar) + nDxL[P(0]&r, ar, se41) [ P(O]6¢)]
= L[q(0;$), D] = Egy(.0) log p(D|0)] — Dxr|q(0; ¢) || p(0)]

=) 7'(8¢, a1, 5e41) = 7(81, ar) + nDxe[q(0; Pev1) | 9(6; 1))




Implementation: Model

BNN weight distribution is chosen to be a fully factorized Gaussian distribution

q(0; ) = [112L N (8] us; 02)
¢ =1{u,0}
o = log(1 + e”)




Optimizing Variational Lower Bound

We have two optimization problems that we care:

1. Onetocompute: r'(s;, ay, S¢v1) = 7(8¢, ar) + nDxo [q(0; dri1) || ¢(6; P1)]
2. Other to fit the approximate posterior:

L|q(0;¢), D] = Egq(;¢) logp(D|0)] — Dxe[q(6; ) || p(0)]




Review: Reparametrization Trick

Let z be a continuous random variable z ~ qu(z]x)
In some cases it is then possible to write: Z2 = g¢,(e, X)
Where:

e gisadeterministic mapping parametrized by ¢
e eisarandom variable sampled from a simple tractable ditstribution

Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint arXiv:1312.6114 (2013).



Review: Reparametrization Trick

In the case of fully factorized Gaussian BNN:

e eissampledfrom a multivariate Gaussian with O mean and identity
covariance
o 0=ulp,x)+eO alp,x)

Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint arXiv:1312.6114 (2013).



Review: Local Reparametrization Trick

e Instead of sampling the weights, sample from the distribution over activations
e More computationally efficient, reduces gradient variance
e [nthe case of fully factorized Gaussian, this is super simple

qﬁﬁ(wq;:j) e N(ﬂ'irj5gi2,j) Vw.i;d EW — q¢(bmj|A) = N(’}’m,jjﬁm?j), with

1000 1000
e _ 2 2
Ym,g = E Ay i g, 5 and ‘5m,j = E AR
i=1 i=1

Kingma, Diederik P., Tim Salimans, and Max Welling. "Variational dropout and the local reparameterization trick." Advances in
Neural Information Processing Systems. 2015.



Optimizing Variational Lower Bound #2
L{q(0; ), D] =|Eg~q(.;) [log p(D]0)]|— Dxr[a(6; ¢) || p(6)]

e (isupdated periodically during training

e D issampled from a FIFO history buffer containing tuples of the form
(8¢, a¢, Sp11) encountered during training

o Reduces correlation between trajectory samples, making it closer to i.i.d.




Optimizing Variational Lower Bound #1

”’",(Sta at, St+1) = 7(8¢, a¢) + Dk |q(0; de11) || a(0; @¢)]
£(q(0;0),s¢)

¢ = arg;nin [PKL[Q(Q; &) |q(0; ¢t—1)] {Eong(10) log p(stl&t, as; 9)]}
tx(a(6:0))




Optimizing Variational Lower Bound

€(q(6;9),st)
¢' = argmin | Di[a(0; 6) 1 9(0; 61—1)] {Eonvg(0) log P51 ¢t 15 0)]

| I—

) ~~
lx(q(0;9))

Optimized using reparametrization trick & local reparametrization trick:

e Sample values for parameters fromq: 0 ~ q(-; ¢)

e Compute likelihood: %Zﬁllogp(D\Qi)




Optimizing Variational Lower Bound

E(Q(Q:@)Sf)

¢ = argmin |[Diala(0; 9) 14(0; 60-1) o log pselérs ar: )]
<
b (q(0;9))

Since we assumed the form to be a fully factorized Gaussian:

2 b
Duala(@:)1a(0:1 = 1 1% ((31) + 210807 — 2100, + W) 12

Hence we can compute the gradient and Hessian in closed form:

82€KL o 1 il 82€KL o 262pi |
Opi  log®(1+er) Op;  (1+eP)?log?(1 + ers)




Optimizing Variational Lower Bound

£(q(6;9),s1)

¢ = argmin | Diala(0; 9) |4(0; 60-1)] ot logpsulér, a1 )]
| e (a(0:9))

In each optimization iteration, take a single second-order step:
—i
A = HH(0)Vl(q(6; 0). 51)

“Because this KL divergence is approximately quadratic in its parameters and the
log-likelihood term can be seen as locally linear compared to this highly curved KL
term, we approximate H by only calculating it for the term KL”




Optimizing Variational Lower Bound

The value of the KL term after the optimization step can be approximated using a
Taylor expansion:

A = HH OV 4£(q(6; ), 51)
_ T _
TANQHAp =1 (H"'V) H(H'V)
At the origin, the gradient and value of the KL term are zero, hence:

Dxu[q(0; ¢ + AAD) [ q(6; ¢)] = 5A*V 3l T H™ (€xr)V o/




Intrinsic Reward

Last detail:

e Instead of using DxL [Q(Q; Cbt+1) H (J(Q; @t)] as the intrinsic reward, it is
divided by the median of the intrinsic reward over the previous k timesteps
e Emphasizes relative difference between KL divergence between samples




Experiments




Sparse Reward Domains

The main domains in which VIME should shine are those in which:

e Rewards are sparse and difficult to get the first rewards
e Naive exploration does not result in any feedback to improve policy

Testing on these domains allows to examine whether VIME is capable of
systematic exploration




Sparse Reward Domains: Examples

Mountain Car Cartpole HalfCheetah

Goal Position —

+— Inelastic Wall

1)http://library.rl-community.org/wiki/Mountain Car (Java)

2) https://www.youtube.com/watch?v=46wjA6dgxOM
3) https://gym.openai.com/evaluations/eval_qtOtPrCgS809U2sZG7ByQ/



Baselines

e Gaussian control noise
o Policy model outputs the mean and covariance of a Gaussian
o Actual action is sampled from this Gaussian
e L? BNN prediction error as intrinsic reward
o A model of the environment aims to predict the next state given the current state and action
to be taken (parametrized for example as a neural network)
o Usethe prediction error as an intrinsic reward

o e(st,ar) = ||0(s¢41) — My(o(se), ae)|3-
O ‘er:= °r RBonus(8,a) = R(s,a) + B (

maxtéT{et}

Et(st, az)
Eonil

1) Duan, Yan, et al. "Benchmarking deep reinforcement learning for continuous control." International Conference on Machine
Learning. 2016.

2) Stadie, Bradly C., Sergey Levine, and Pieter Abbeel. "Incentivizing exploration in reinforcement learning with deep predictive
models." arXiv preprint arXiv:1507.00814 (2015).



Results

TRPO used as the RL algorithm is all experiments:

e Naive (Gaussian noise) exploration almost never reaches the goal
e L?does not perform well either
e VIME is very significantly more successful

Curiosity drives exploration even in the absense of any initial reward




More Difficult Task: SwimmerGather

SwimmerGather task:

e Very difficult hierarchical task

e Need tolearn complex locomotion
patterns before any progress can be made

e [nabenchmark paper, none of the naive
exploration strategies made any progress
on this task

https://www.youtube.com/watch?v=w78kFy4x8ck


http://www.youtube.com/watch?v=w78kFy4x8ck

More Difficult Task: SwimmerGather

e Yet, VIME leads the agent to acquire complex motion primitives without any
reward from the environment




Comparing VIME with different RL methods:
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e REINFORCE & ERWR suffer from premature convergence to suboptimal policies



VIME's Exploration Behaviour:

Plot of state visitations for MountainCar Task:

e Blue: Gaussian control noise
e Red:VIME

VIME has a more diffused visitation pattern that
explores more efficiently and reaches goals more

quickly
(d) state space




Exploration Exploitation Trade-off

r' (8¢, a1, St41) = (8¢, at) + NDxr[q(0; Pe+1) || q(6; ¢1)]

e By adjusting the value of n, we can tune how much emphasis we are putting

on exploration:
o Too high: will only explore and not care about the rewards

o Too low: algorithm reduces to Gaussian control noise which does no perform well on many
difficult tasks




Conclusion

e VIME represents exploration as information gain about the parameters of a
dynamics model: 7' (8t, at, $t4+1) = (8¢, at) + NEp(s, ., 11s..a0) [PkL [P(O]Es, at, st41)||[D(F]E

e Wedo this with a good (easy) choice of approximating distribution g:

' (8¢, at, St41) = 7(8¢, at) + N DxL[q(0; de41) || ¢(6; o))

e VIME is able toimprove exploration for different RL algorithms, converge to
better optima, and can solve very difficult tasks such as SwimmerGather




Optimizing Variational Lower Bound

Modification of variational lower bound:

e We can assume at timestep t, the approximate posterior g at step t-1 is a good
prior since q is not updated very regularly (as we will see).

L{q(0; ¢), D] = Egq(;¢) [log p(D|0)] — Dxr[q(0; ¢) [[|p(0)
£(q(6;9),s1)
Cﬁ' = arg;nin [?KL[Q(E*’; ?) |lq(0; th—l)/ _EQNq(-;gb) log p(st|&t, ar; 9)]}

v‘

lxi(q(0;9))




PILCO: A Model-Based and
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Model Based RL

Model based Model free

- 2) _don’t take
V0T freeway

Current Gpinion in Neurobiology

Figure 1: Two ways to choose which route to take when traveling home from work on
friday evening.

Simple Definitions:

S is the state/observation space of an
environment

A is the set of actions the agent can
choose

R(s,a) is a function that returns the reward
received for taking action a in state s
m(als) is the policy needed to learn for
optimizing the expected rewarded
T(s'|s,a) is a transition probability function
Learning and using T(s'|s,a) explicitly for
policy search is model-based



Overview of Model Based RL

Estimate T(s'|s,a) based
fit a model to on collected samples
estimate return

Eqg. Supervised Learning

generate samples

(i.e. run the policy)

Optimize 1T (a|s)
improve the policy
Eg. Backprop through model




Advantage and Disadvantages of Model-Based

+ Easy to collect data - Dynamics models don’t optimize for task

performance
+ Possibility to transfer across tasks

- Sometimes model is harder to learn than

+ Typically require a smaller quantity of a policy

data

- Often need assumptions to learn (eg.
continuity)



Main Contributions of PILCO

Sometimes model is harder to learn than a policy:

one difficulty is that the model is highly biased

fit a model to
estimate return

generate samples

(i.e. run the policy)

; improve the policy

PILCO Solutions:

Reducing model bias by learning a
probabilistic dynamics model and
explicitly incorporating model
uncertainty into long-term planning

1. probabilistic dynamics model with
model uncertainty

2. Incorporating uncertainty into
long-term planning



Main Contributions of PILCO

required interaction time in s

KK: Kimura & Kobayashi 1999

D: Doya 2000

C: Coulom 2002

WP: Wawrzynski & Pacut 2004

R: Riedmiller 2005

RT: Raiko & Tornio 2009

vH: van Hasselt 2010

pilco: Deisenroth & Rasmussen 2011

KK D C WP R RT vH pilco



Overflow of their algorithm

Algorithm 1 pILCO

1: init: Sample controller parameters 8 ~ N(0,I).

Apply random control signals and record data.

2: repeat
3:  Learn probabilistic (GP) dynamics model, see
Sec. 2.1, using all data.

4:  Model-based policy search, see Sec. 2.2-2.3.

5: repeat

6: Approximate inference for policy evaluation,
see Sec. 2.2: get J™(0), Eqgs. (10)—(12), (24).

T Gradient-based policy improvement, see
Sec. 2.3: get dJ™(0)/ d0, Eqgs. (26)—(30).

8: Update parameters 0 (e.g., CG or L-BFGS).

9: until convergence; return 6*

10:  Set 7* + mw(6*).

11:  Apply 7* to system (single trial/episode) and

record data.

12: until task learned




1. Dynamics Model Learning

A = Xy — X411+ €

p(X¢|X¢—1,04-1) = N(Xt | 1t Et) ,
pr = Xi—1 + Eg|Ay,
Et — VE?LI'f[At] ;

e R T W
Ot s QO
j, THERET_ S SR . S
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2. Policy Evaluation

T0) =3, B le(x)], o~ N (o, o),

Evaluating this expected return of policy requires all distributions p(}{l )? C e p(XT)

To get these distributions we should obtain first p(xt_l,, llt_1) and propagate this distribution
through GP model

We assume that p(xt—lp ut—l) is gaussian and approximate its distribution using exact moment
matching

After propagating  »(X¢—1) = p(x¢—1,u:—1):hrough posterior GP model , the equation that gives
predictive distribution of state difference is

p(Ay) = / D (&1}l 1)p(Rer) Aoy,



. Policy Evaluation(cont)

-05

0.5

Lower Right Panel: The
input distribution

p(xt— 1, W 1)

Upper Right Panel:
Posterior GP model

Upper Left Panel:Blue
curve is approximated
gaussian with exact mean
and variance of green area.



2. Policy Evaluation(cont)

e = He—1 T HA
Zt — Et—l —+ Zﬂ_ —+ EGV[X{;_L, ﬁ'\t] —+ EC}V[ﬂt, Xt—l]

cov|X;_1, Ay = cov|xe_q, ut_l]z,;lmv[ut_l A

If we find (A and 3, we can define p(x:) as we already know £t—1 and X,_;



2.1 Mean Prediction

Using law of iterated expectations, for target dimensions a = 1,...,D, we obtain the
mean prediction dimension by dimension

pa =Ez,  [Ef|f(Xe—1)

— \/'ﬂ"}f(}h{t_lj_)ﬂ\r(}h{t_l ‘,l':{t_l i:t_]_) {:l}h{f_—]_

e

%0_1]) = Ex,_ [mys(%_1)

= Blqg,

me(%,) = Ef[A] =k, (K +02D) ly =k 3



2.1 Mean Prediction(cont)

with B, = (Ka+ gga )_lya and q, = [quv -+ sy Yay,
With m s given in Eq. (7), the entries of q, € R™ are

Ja; — / G‘.(Xi X 4 )N(it—l |,-&t—1-. Et—l) dxs_q

— 1,73 =
\/lEr 11"1 o E'Xp( /i (2p—1 + Ag) -’/-;_.) y

vy = (X — fbe—1) -
Here, v; is the difference between the training input
x; and the mean of the “test” input distribution p(x;_1,us_1).

ka(ii} it—l) is obtained from k(x, X'} = o exp ( — %(5’; — j‘i’)TA_l(i _ j‘i’))



2.2 Covariance Matrix of the Prediction

From Gaussian multiplications and integration, we obtain the entries for (;; of Q € IR"™*"

_ k (i';ﬁr—ljkb(i'rﬁt—l) = 1 J —1 =
o= : (-?‘hp( z_g-_jR Ef__-lz.g;j)

VIR 2

After covariance and mean prediction we can get expected return of policy J" () by summing
the expectations calculated like this

Fx, [c(x:)] = /C(Xt)N(Xt | i, Bt ) dxs

e(x) =1 — exp(—||x — Xsargesl|*/0) € [0, 1]



2.3 Analytic Gradients for Policy Improvement

Both pu; and 3; are functionally dependent on the
mean ., and the covariance 2, of the control sig-
nal (and #) through g,—1 and 3;_1, respectively .

We obtain the derivative of d.J™/df by repeated application of the chain-rule:
Swap the order or differentiating and summing with &, := [, [¢(x; )] we obtain

d&  d& dp(x¢)  O& dp 2 oE; d¥,;

df  dp(x,) d0 = Ou, A 9%, db

dp(x;) _ Op(x¢) dp(x¢—1)  Op(x¢)
46 op(xi—1) dO 90

op(Xe) { toJ1n 02 }

Op(x¢_1) Op(xs—1)’ Op(xi_1)

Applying chain rule, we obtain




2.3 Analytic Gradients for Policy Improvement (cont)

Here , we focus on |, / d¢

e O dpre—1 N |(‘.J;x,« d¥; 1 : iy

de Opte—1 e i1 de a6

Since dp(x;_1)/d¢ is known from time step ¢ — 1 and Jp;/dp(x;_1) is computed from
Chain-rule to the equations at the part mean prediction and we conclude with

iy L s IOp(uag_q) L OUA Ofly |E),t_1$ e b 208
a6 Ip(ug_1) 6 A, OO g%, 08

The first derivative terms above can be obtained from equations in mean prediction part
and the second ones depend on policy parametrization.

Analytic gradient computation of j7 is much more efficient than estimating policy
gradients through sampling.

After getting d./™/ d¢ using this procedure , policy parameters can be updated with
CG or L-BFGS algorithm



Experiments + Result
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3. Experiments and Results

e PILCO's success in efficiently learning challenging control tasks, including both standard
benchmark problems and high-dimensional control problems.

e PILCO learns completely from scratch by following the steps detailed in the Alg. 1.

e The results discussed in the following are typical, that is they do neither represent best
nor worst cases.



3.1 Cart-Pole Swing-up (video)

PILCO was applied to learning to control a real cart-pole system, see Fig 3.

Cart with mass 0.7 kg running on a track and a freely swinging pendulum of mass 0.325 kg attached to the cart.
The objective was to learn a controller to swing the pendulum up and to balance it in the inverted position in the middle
of the track. A linear controller is not capable of doing this.

e The learned state-feedback controller was a nonlinear RBF network that is

s, 0) — E ?:1 ;b (<) ,
Pi(x) — exp(—2(x — ) " A7 (= — £25))

with nn = 50 squared exponential basis functions cen-
tered at p;. In our experiment, @ = {w;, A, p:} € RS

e PILCO successfully learned a sufficiently good dynamics model and controller for this standard benchmark problem fully
automatically in only a handful of trials and a total of 17.5 s.

Fig 3. Real cart-pole system. Snapshots of a controlled trajectory of 20 s length after having learned the task. To solve the swing-up plus balancing,
PILCO required only 17.5 s of interaction with the physical system.


https://www.youtube.com/watch?v=XiigTGKZfks

3.2. Cart-Double-Pendulum Swing-up

PILCO learning a dynamics model and a controller for the cart-double-pendulum swing-up.

e The objective was to learn the policy 7" to swing the double pendulum up to the inverted position
and to balance it with the cart at the start location x.

e A standard control approach to solve the cart-double pendulum task is to design two separate
controllers, one for the swing up and one linear controller for the balancing task.

e PILCO fully automatically learned a dynamics model and single nonlinear RBF controller,
withn =200 and g = R!%16 to jointly solve the swing-up and balancing. It required about 20-30

trials corresponding to an interaction time of about 60s-90s.



3.3 Unicycle Riding

They applied PILCO to riding a 5-DoF unicycle in a realistic simulation of the one shown in the
Fig.4(a).
The goal was to ride the unicycle, to prevent it from failing. To solve the balancing task, they used

linear controller m(x.f) = Ax+ b with # = {A.b} € R?*.

PILCO required about 20 trials to learn the dynamicg models and a controller that keeps the
unicycle upright.

=Zcmllld = (3,10] cm de {(10,50] cm d = Socm
1

a:?\-

=

= 80

=1

= 60

B

= A0

=

& 20

E

- 1 2 = 4 5
time in s

(a) Robotic uni- (b)) Histogram (after 1.000 test runs)
cycle. of the distances of the fAvwheel from

being upright.

Figure 4. Robotic unicyvele system and simulation results.
The state space is IR'Z, the control space IR2.



3.4 Data Efficiency

Tab. 1. Summarizes the results presented in the paper.

e For each task, the dimensionality of the state and parameter spaces are listed together with the
required number of trials and the corresponding total interaction time.
e The table shows that PILCO can efficiently find good policies even in high dimensions that depends on

both the complexity of the dynamics model and the controller to be learned.

KK: Kimura & Kobayashi 1999

D: Doya 2000

C: Coulom 2002

WP: Wawrzynski & Pacut 2004

R: Riedmiller 2005

RT: Raiko & Tornio 2009

vH: van Hasselt 2010

pilco: Deisenroth & Rasmussen 2011

Table 1. P1Lco’s data efficiency scales to high dimensions.
cart-pole  cart-double-pole  unicyele

required interaction time in s

state space R’ R’ R" .
# Hia]s < 10 20'3[] A QU o' KK D C WP R RT vH pilco

. i i i i
- 1€ AL ~OUS-JUS ~ US§-aUS ]
OXPEHCHCE ~ 20" - bob 90':3 . 20 i 30‘5 Figure 5. Data efficiency for learning the cart-pole task
p&mn’lett’l‘ Spﬁ(ﬁt’. Bgﬂj B|816 BZB in the absence of expert knowledge. The horizontal axis

chronologically orders the references according to their
publication date. The vertical axis shows the required in-
teraction time with the cart-pole system on a log-scale.




4. Discussion

e Trial-and-error learning leads to few limitations in the discovered policy: PILCO is not an
optimal control method but it finds a solution for the task.

e PILCO exploits analytic gradients of an approximation to the expected return = for indirect
policy search.

e PILCO obtains gradients with value zero and gets stuck in a local optimum, although it is
relatively robust against the choice of the width of the cost in the above equations, there is no
guarantee that PILCO always learns with a 0-1 cost.

e One of the PILCO’s key benefits is the reduction of model bias by explicitly incorporating
model uncertainty into planning and control.

e Moment matching approximation used for approximate inference is typically a conservative
approximation.



4. Conclusion (cont)

e The probabilistic dynamics model was crucial to PILCO'’s learning success.

e Learning from scratch with this deterministic model was unsuccessful because of the missing
representation of model uncertainty.

e Since the initial training set for the dynamics model did not contain states close to the target
state, the predictive model was overconfident during planning.

e They introduced PILCO, a practical model-based policy search method using analytic
gradients for the policy improvement.

e PILCO advances state-of-the-art RL method in terms of learning speed by at least an order of
magnitude

e Results in the paper suggests using probabilistic dynamics models for planning and policy
learning to account for model uncertainties in the small-sample case, even if the underlying
system is deterministic.
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Overview

e GOAL: use model-based reinforcement learning to search policy in stochastic
dynamical system

e DIFFICULTY: robust learning of Bayesian Neural Networks with stochastic
input variables

e METHOD: approximate by a-divergence, train by gradient-based policy search

e RESULT: better result on real-world scenarios including industrial benchmark
(better than Variational Bayes)



Background & Review



Bayesian Neural Networks

e Use distributions to represent parameters @
e Give prior distribution on weights P(w) // \
o  Usually Gaussian priors I\ N A

o One of the randomness
e Learn posterior distribution P(w | D) @

T

r/

/\_J\

Figure source: Blundell, C. et al. Weight Uncertainty in Neural Networks. ICML 2015.




Notation Definition

e DataD={x,y "
o featurex €R°(N*D) targety €R"(N*K)
o vy =fix,z;W)t+e_

e Network f

o L layers
oV, hidden units in layer |
e Weight W:
o W={W}
oV, *(V,+1) matrix +1 for per-layer bias



Stochastic Dynamical System

e COriginate: stochastic noise in real-world scenarios

e Randomness:
o  Stochastic inputz ~ A (0, )

N
p(z) = [[ M(.l0,7)

m Capture unobserved stochastic features that can affect the network's output
o Noise in dynamics e ~ N (0, X)
m  Generate a predictive distribution in form of Gaussian mixture
o Uncertainty in weights W ~ N (0, A)
L Vv, Vi-i+1

V) =111 1] N(wi;il0,2)

I=1:i=1 j=1
m Bring uncertainty in weights for better prediction
m Regularization




Reinforcement Learning Model on BNN

e Likelihood
N N K
p(Y | W,z,X) =[] plyn| W, 2,%x,) = HH (W e | T (s 23 W) )
n:l : =
e Prior

L V, Vi_i+1

= HH H N('w-ij,l |0= )‘)

I=1:i=1 j=1

e Posterior (given by Bayes rule)

p(Y [ W, 2, X)p(W)p(z)

V21D = T )




Reinforcement Learning Model on BNN

e Prediction
p(¥« | %4, D) = f[/N(y* | Pt W), NN (240,10 dz*] p(W,z| D) dW dz

e Intractable -> use approximations (variational method)



Variational Bayes

e A typical way
e GOAL: approximate a complex Bayesian network by a simpler network with

minimum information divergence

o Analytical approximation to posterior (Monte Carlo sampling)
o Derive a lower bound for marginal likelihood

e TODQO: select simple network g to surrogate complex network p
e TODOQO’ select distribution g(z) to minimize dissimilarity d(q;p)
e Dissimilarity measure: Kullback Leibler divergence (KL-divergence)

KLyl o) = [ o) log "o+ [ ata) - pla)ie

e Generalization of KL-divergence -> a-divergence




a-Divergence

e A generalized version of KL-divergence.

Jop(x) + (1 — a)q(z) — [p(x)]*[g(2)]'~*dz
a(l — a)

© Dq(pllq) = , & € [—00, +00],
e Properties

o Convexin g for a>1; Nonnegative;

2
o =0,whenp=gq, e.g. When a=0.5, Hellinger Distance Dy (p|lq) = 2/ (\/p(:t: \/q(a:)) dz
o When agoesto O or1,itis equivalent to KL-divergence

m Interchange of limit and integral and use L'Hospital’s rule



a-Divergence vs. Variational Bayes

€
q tends to fit a mode of p q tends to fit p globally

NN NN

a=10

Variational
Bayes




BNN vs. Gaussian Process

o GP
o Work extremely well with small amounts of low dimensional data;(hard to scale)
o Handling of input uncertainty can be done analytically;
o Sampling dynamics for approximation is infeasible;(the abundance of local optima)
o No temporal correlation in model uncertainty between successive state transitions.(Markov
process)
e BNN
o Overfitting;
o  Express output model uncertainty (Compared with NN);
o Sampling dynamics is good for BNN;
o Recurrent neural network.

a Ref: Gal, Y., McAllister, R.T. and Rasmussen, C.E., 2016, April. Improving PILCO with bayesian neural network dynamics
models. In Data-Efficient Machine Learning workshop (Vol. 951, p. 2016).



Minimization

e Minimization

O

Similarly, we approximate the posterior distribution with the factorized Gaussian distribution

L vi Vil N
o,2) = | T[TL I] Mottt [HN<zn|mz,vz>] .
I=li=1 j=1 n=1

e a-Divergence in this case

©)

(@)

Dao[p(W, 2| D)|lg(W, 2)] = ﬁ (1 . / p(W, 2| D)*q(W, z)u—co) dW dz,

Direct minimization is infeasible, instead, we optimize an energy function whose minimizer
corresponds to a local minimization of a-divergences, with one a-divergence for each of the N
likelihood factors.

We can represent g as W»2) H f W)fn(zn)] p(W)p(2),

fis Gaussian factor that approxmates the likelihood factor p(yn | W, z, Xn)

Black-Box a-Divergence Minimization



Energy function

(@)

e Energy function
N (8
_ 1 p(Yn | W, Xp, Zn, 2)

L V; VigH -y =
o T I

I=1:=1 j=1

3 vy, p(zn)

z N
fn(zn) =exp {J_—”Zﬁ g 2 zn} o q(zn) ; a(W,2) [H f(W)fn(zn):I pW)p(2),
n=1

log Zq is the logarithm of the normalization constant of the exponential Gaussian form of g

o  Minimization of Energy function agrees with local minimization of a-Divergence.
e Training
o The scalable optimization is done in practice by using stochastic gradient descent.



The Reparameterization Trick

@ The gradient of the energy function

N
- 1 P(Yn’W7Xn7 Zn7 Z) (o7
Eal@) = —logZg = ) logEwane [( W) |’

can be obtained using the reparameterization trick?.

@ For a chosen approximate posterior g4(z|x), one can reparameterize
the random variable Z ~ g4(z|x) using a differentiable transformation
g4 (€, x) of an auxiliary noise variable e:

Z = qy(z|x) with €~ p(e).

!Kingma, D.P. and Welling, M., 2013. Auto-encoding variational bayes..



Policy Search Using BNNs with Stochastic Inputs

Model-based policy search methods include two key parts:

@ Learning a dynamics model from data in the form of state transitions
(st at, Se41)-

@ Learning the parameters W,. of a deterministic policy function 7 that
returns the optimal action a; = w(s¢; Wi ).

Assuming the dynamics to be stochastic with the true transition model:

St = ftrue(st—la dt—1, Zt, Wtrue)- (1)

The probability distribution p(s¢|s;_1,a;—1) can be approximated using a
BNN with stochastic inputs:

p(st|st—1,ar-1) ~ /N(5t|f(5t—1a at—1,2t); W), L)q(W)N (z:[0, \)dWdz;.



Policy Search Using BNNs with Stochastic Inputs

@ The parameters W, of a policy is optimized through minimizing the
expected cost over a finite horizon T with respect to the belief g(W).

@ Given a cost function c(s;), the objective to be optimized by the
policy search algorithm is

-
JOW;)=E [Z c(st)] :

=i

@ Assuming that the dynamics are Markovian with respect to the
current state and the current action, then

T

JW,) = / [Z c(st)] [p(st|se—1,ac—1)] p(s0)dsp . .. dst.  (2)

t=1



Policy Search Using BNNs with Stochastic Inputs
The objective function J(W;;) can be approximated by sampling methods:

.
JW) = / Zc(st)] [p(st|st—1,ac—1)] p(s0)dsp . . . dsT
t=1

]

]~

C(Sg/v’{ZL"t}’{el'"t}’wﬂ )] q(W)dW

[ t=1

T_

T TV (€el0, D)V (2:]0, \)derdz: | p(so)dso

t=1

1 K TT
%R Z Z C(Sz_/\}a{zl...t},{ﬁl...t},ww)] ,

k=1 Lt=1
where sl/v’{zl"'t}’{ﬁl"'t}’ww is the state obtained at time t in a roll-out
generated by using a policy with parameter W, a transition function
parameterized by VV and input noise zi, ..., z;, with additive noise values

€ly...4€¢.



Policy Search Using BNNs with Stochastic Inputs

Algorithm 1: Model-based policy search using Bayesian neural networks with stochastic inputs.

Input: D = {s,,a,,A,} fornel...N
Fit (W) and X by minimizing the a-divergence
function UNFOLD (sg)
Sample {W!,... WX} from qg(W)
C+0
fork=1:Kdo
fort =0:7do
Zf—i—l ~ N(07 ﬁY)
At f(se, (563 Wa), 2801 WF)
6?—1—1 ~ N(07 Z)
St+1 + St + A + €f+1
C+C+ C(8t+1)
return C'/ K

Fit W, by optimizing + 32" UNFOLD(s,,)




Experiments: Wet Chicken



Wet Chicken Description

- A canoeist paddles in a 2D river starting at the origin (0,0), with
position given by (s, ¥z) -

- The river has a waterfall at y: = I. The canoeist has to start over at
the origin after falling into the waterfall

- The canoeist performs an action (a;s,a:,) € [-1,1]? that represents
the direction and magnitude of paddling at each time step t

- At each time step t, The canoeist receives a reward r, = —(I — y)

(1, 0) Waterfall (I, w)
|
\ 1‘ =

@
N
A
S 2
(0, 0) (0, w)




Wet Chicken Description

- However, the system has stochastic turbulences s, and drift v,
that is dependent on horizontal position z;, where:

Ve = 3$t‘w_1

8t =3.5— 7, ~ Unif([—1,1])

- Canoeist’s new position under this dynamics is:

& OO

Ti+1 =

Tt + Gt o

where,

if x:+ At < 0 0
L G >4 , yt+1 =4 0
if zi+ap,>w «
otherwise Yir1

Jer1 =Yt +(ary — 1) +ve + 5173

if g1 <0
if ge1>1,
otherwise

(1, 0) Waterfall (I, w)
|
A 1‘ =

L
\
A
2 ¢
(0, 0) (0, w)



Bi-Modality and Heteroskedasticity
Jtr1 =Y+ (at,y — 1) + v + 875

e The transition dynamics of this system exhibit complex stochastic patterns

e Bi-modality: As canoeist moves closer to the waterfall, the predictive
distribution for the next state becomes increasingly bi-modal

e Heteroskedasticity: noise variance is different depending on current state

e Challenging for traditional model-based reinforcement learning methods.

e Need to tackle with models that can capture both bi-modality and
heteroskedasticity patterns in the predictive distribution (BNN optimized using
alpha divergence).



Bi-Modality and Heteroskedasticity - Toy Dataset

Bi-Modal
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Wet Chicken Results
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Wet Chicken Results
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Experiments: Industrial
Applications
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Results

Dataset MLP VB a=0.5 a=1.0 GP
Log-Likelihood
WetChicken -1.755+0.003  -1.140+0.033 -1.057+0.014 -1.070+£0.011 -1.722+0.011
Turbine -0.868+0.007 -0.775+0.004 -0.746+£0.013 -0.774+0.015 -2.663+0.131
Industrial 0.767+0.047  1.1324+0.064  1.328+0.108  1.326+0.098  0.724+0.04
Avg. Rank 4.340.12 2.6+0.16 1.34+0.15 2.140.18 4.740.12

Table 2: Model test error and test log-likelihood for different benchmarks. Printed are average values
over 5 runs with respective standard errors. Bottom row is the average rank over all 5 x 3 runs.

Dataset MLP VB a=0.5 a=1.0 GP PSO-P
Wetchicken -2.71+£0.09 -2.67+0.10 -2.37+0.01 -2.42+0.01 -3.05£0.06 -2.34
Turbine -0.65+£0.14 -0.45+0.02 -0.41+0.03 -0.55+£0.08 -0.64+0.18 NA

Industrial ~ -183.54+4.1 -180.2+0.6 -174.24+1.1 -171.1+2.1 -285.2+20.5 -145.5
Avg. Rank 3.040.3 0 1.5+0.2 2303 4.5+0.3

Table 1: Policy performances over different benchmarks. Printed are average values over 5 runs with
respective standard errors. Bottom row is the average rank over all 5 x 3 runs.



Conclusion



Conclusion

e GOAL: use model-based reinforcement learning to search policy in stochastic
dynamical system

e DIFFICULTY: robust learning of Bayesian Neural Networks with stochastic
input

e METHOD: approximate by a-divergence, train by gradient-based policy search

e RESULT: Obtained state-of-the-art policies obtained in industrial problems, with
rollouts sampled from the BNN model.



