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Motivation 

• Active learning – A learning algorithm which is able to 
interactively query for more data points for the training 
process, so as to better achieve some goal.

• Actively selecting data can be useful in two cases. 

• Slow/expensive measurements

• Useful data subset selection

• Basic Idea: Come up with objective functions over the input 
space that quantify the information gained that will help in 
actively selecting new data
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StateŵeŶt of the Proďleŵ: The setup ……
• Already gathered input and output pairs 

• Data are modeled with an interpolant 

• An interpolation model H 

• architecture A

• Regularizer or prior on w

• Cost function or noise model N
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Statement of the Problem:  The goal
• Roughly, our goal is to pick  points to add to our dataset which are 

most informative in some sense. 

• Depends on what we are interested in -

• Selecting new data points to be maximally informative about the values that 
that ŵodel’s paraŵeters w should take

• The above, but only concerning a region in the input space

• Selecting data to give us maximal information to discriminate between two 
models. 

• Possible Problem: Can our choice bias over inferences ? 

• No, our Bayesian inference will be conditioned on the data so in some sense 
we have marginalized out the sampling strategy
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Choice of Information measure 

• Measuring information gain either by calculating change in entropy or 
cross entropy when we select a data point

• Change in entropy:

• Where 𝑆ே is: 

Probability of Parameters

before you receive the datum  

Measure on w
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Choice of Information measure 

• Cross entropy: 

• G’ is the KL DiǀergeŶĐe 
• Measure of how much information we gain when we are informed the true 

distribution of ݓ is 𝑃ே+ଵ ݓ rather than 𝑃ே ݓ

Probability of Parameters before you receive the datum  

Probability of Parameters after you receive the datum  
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Comparing Information Measures 

• Change in entropy
• Shrinkage of high probability bubble region 

• Invariant under translation 

• Cross entropy 
• Can also respond to translation 

•

where expectation is over  P(t) [N + 1 datum generating 
distribution]

• The above shows that E(ΔS) is independent of m(w) and it does not 
matter which form of information we use 
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Reǀieǁ of MaĐkay’s NotatioŶ

Prior

Likelihood 

Regularizing Function 
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Reǀieǁ of MaĐkay’s NotatioŶ 

Posterior  
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Task 1: Deriving the total information gain 

Where we used

Expanding y around ݓ𝑚𝑝:
If the datum t falls in the region such that our quadratic approximation applies 

It is independent of the value that the datum t actually takes, so we can  evaluate 𝐴N+ଵjust 

by calculating g 10



Task 1: Deriving the total information gain 

Using 

Interpretation: 

• More information if low intrinsic noise 

• More information if higher interpolant variance 

• Assuming constant noise, this measure will most likely encourage picking 

points at the edges of our current data set 11



Task 2: Information gain in a region of interest 

• Motivation – The total information gain will encourage data selection 
at edges. Redefine the problem to look at local regions  

• Problem Statement - We wish to gain maximal information about the 

value of the interpolant at a particular point ݔ ௨
• Again assuming quadratic approximation, the variance in interpolant 

is given by 

𝜎௨ଶ = 𝑔 ௨𝑇 𝐴−ଵ𝑔 ௨
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Task 2: Information gain in a region of interest 

Interpretation -

• Top term is maximal when you pick you align the input with the regional point.

• Example cases:

• Constant intrinsic noise, interpolant variance  picking a point at the sample location will  

maximize correlation 

• Much stronger noise at ݔ ௨  Denominator might overpower the numerator at ݔ ௨ ; best pick 

somewhere else.
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Task 2: Information gain in a region of interest 

• Want to construct objective function that defines information gain  
for multiple points that represents a region.

• Define regional representatives with output variables {ݕ ௨ } and inputs {ݔ ௨ }, ǁhere  u  = 1 …. V.

• Two candidates:

• Joint information gain

• We’ll skip this. It eŶds up Ŷot ďeiŶg useful siŶĐe usiŶg ŵaǆiŵiziŶg this gaiŶ ĐaŶ Đreate 
arďitrarǇ ĐorrelatioŶs iŶ the represeŶtatiǀes’ seŶsitiǀities.

• Mean Marginal information  gain
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Task 2: Information gain in a region of interest 

Mean Marginal information Gain:

• Take a weighted average of the individual ሺ௨ሻentropiesݕ

Where 𝑃 ௨ is the probability that we will be asked to predict ݕሺ௨ሻ
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Task 2: Information gain in a region of interest 

Mean Marginal information Gain:

• Two simple variations:

• 𝜎௨ଶ → 𝜎௩ଶ + 𝜎௨ଶ : This may lead to different choices if 𝜎௨ଶ < 𝜎௩ଶ
• 𝐸ெ = 𝛴௨𝑃௨𝜎௨ଶ : More strongly penalizes large variance
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Case of linear models

y = 𝛴ݓℎ𝜙ℎ ݔ
• Hessian Matrix will be independent of {t}

• The sensitivities g only depend on the 𝜙ℎ .

• Consequence: we can completely specify the information gains for a 
sequence of choices before even seeing the targets.
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Task 3: Discriminating two models 

• Again under quadratic approximation, two models will make slightly 
different gaussian predictions about the value of any datum 

• Intuition for choice of x: 

• More information when the means are well separated with respect to a scale 
defined by 𝜎ଵ and 𝜎ଶ

• Separated variances allows us to explore different Occam factors 
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Task 3: Discriminating two models 

weak likelihood ratio: or
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Demonstration and Discussion
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The Achilles' Heel

• We have been assuming the models have been correct.

• Incorrect models can result in blowup away from region of interest 

• Example: Predicting accurately at ݔ ௨ with a linear model on 
quadratic data 

• Information gained encourages us to take points as far away as possible 

• This contradicts what will be most informative here which is sampling values 

close to ݔ ௨
• Further research: information gain in the context of approximate 

models 
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Complexity

• The task of computing for example the mean marginal likelihood is 
cheaper than computing + inverting the Hessian

• O(Nk^2)+O(k^3) and O(Ck^2) + O(CVk), respectively. C = # of candidate points, 
V = # of region defining points.
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Summary

• We defined 3 objective functions over x (total, marginal, mean 
marginal information gains) to address different contexts (maximizing 
information in total, at a point, and at a set of points).

• Requires validity of the quadratic/local Gaussian approximation of the 
cost function M(w).

• Weakness: assumption that models are correct.
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INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION

AUTOMATED CURRICULUM LEARNING

◮ Interest in curriculums resurfaced in 2009 (Bengio et al.)

◮ Manually steering models to train on gradually more

difficult tasks achieved faster convergence.

◮ Core idea for Automated Curriculum Learning:

Given a dataset of input-output pairs {x, ŷ} and a model

that has trained on {x[0..N], ŷ[0..N]}, learn to choose the next

training example {xN+1, ŷN+1} that maximizes learning.
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INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION

AUTOMATED CURRICULUM LEARNING

◮ Cast curriculum learning as a Multi-Armed Bandit:

◮ Curriculum with N tasks as a N-Armed Bandit

◮ No assumptions made about rewards (”adversarial”).

◮ An agent selects an arm and observes its payoff,

while the other payoffs are not observed.

◮ Adaptive policy seeks to maximize payoff from bandit.
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INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION

THE EXP3 ALGORITHM FOR ADVERSARIAL BANDITS

◮ Goal: Minimize regret with respect to best arm.

◮ Chooses arm i according to policy πt with probability:

π
Exp3
t (i) =

ewt,i

∑N
j=1 ewt,j

◮ where wt,i are weights calculated as a sum of

historically-observed, importance-sampled rewards:

wt,i = η
∑

s<t

r̃s,i

r̃s,i = rs1[as=i]/π
Exp3
s (i)
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INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION

WEAKNESSES OF EXP3: SHIFTING REWARDS

◮ Exp3 closely matches the best single arm strategy over the

whole trajectory.

◮ For curriculum learning, a good strategy often changes:

◮ Easier cases in training data will provide high rewards

during early training, but have diminishing returns.

◮ Over time, more difficult cases will provide higher rewards.
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INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION

THE EXP3.S ALGORITHM FOR SHIFTING REWARDS

◮ Addresses issues of Exp3 by encouraging exploration with

probability ǫ and by mixing weights additively:

π
Exp3.S
t (i) = (1 − ǫ)

ewt,i

∑N
j=1 ewt,j

+
ǫ

N

wt,i = log

[

(1 − αt) exp
(

wt−1,i + ηr̃t−1,i

)

+
αt

N − 1

∑

j 6=i

exp
(

wt−1,j + ηr̃t−1,j

)
]

◮ This effectively decays the importance of old rewards and

allows the model to react faster to changing scenarios.
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INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION

LEARNING A SYLLABUS OVER TASKS

◮ Given: separate tasks with unknown difficulties

◮ We want to maximize the rate of learning:

1. At each timestep t, we sample a task index k from πt.

2. We then sample a data batch from this task: {xk
[0..B], ŷk

[0..B]}

3. A measure of learning progress ν and the effort τ

(computation time, input size, etc.) are calculated.

4. The rate of learning is rt =
ν
τ

and is re-scaled to [−1, 1].

5. Parameters w of the policy π are updated using Exp3.S
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INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION

LEARNING PROGRESS MEASURES

◮ It is computationally expensive (or intractable) to measure

the global impact of training on a particular sample.

◮ We desire proxies for progress that depend only on the

current sample or a single extra sample.

◮ The paper proposes two types of progress measures:

◮ Loss-driven: compares predictions before/after training.

◮ Complexity-driven: information theoretic view of learning.
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INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION

PREDICTION GAIN

◮ Prediction Gain is the change in sample loss before and

after training on a sample batch x:

νPG = L(x, θ)− L(x, θx)

◮ Moreover, when training using gradient descent:

∆θ ∝ −∇L(x, θ)

◮ Hence, we have a Gradient Prediction Gain approximation:

νGPG = L(x, θ)− L(x, θx)

≈ −∇L(x, θ) ·∆θ

∝ ||∇L(x, θ)||2
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INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION

BIAS-VARIANCE TRADE-OFF

◮ Prediction Gain is a biased estimate of the expected change

in loss due to training on a sample x:

Ex′∼Taskk
[L(x′, θ)− L(x′, θx)]

◮ In particular, it favors tasks that have high variance.

◮ This is since sample loss decreases after training, even

though loss for other samples from the task could increase.

◮ An unbiased estimate is the Self Prediction Gain:

νSPG = L(x′, θ)− L(x′, θx), x′ ∼ Dk

◮ νSPG has naturally higher variance due to sampling of x’

CSC2541 - Scalable and Flexible Models of Uncertainty 11/18



INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION

SHIFTING GEARS: COMPLEXITY IN STOCHASTIC VI

◮ Consider the objective in stochastic variational inference,

where Pφ is a variational posterior over parameters θ and

Qψ is a prior over θ:

LVI = KLD(Pφ||Qψ)
︸ ︷︷ ︸

Model Complexity

+

Data Compression under Pφ
︷ ︸︸ ︷
∑

x′∈D

Eθ∼Pφ
[L(x′, θ)]

◮ Training trades-off better ability to compress data with

higher model complexity. We expect that complexity

increases the most from highly generalizable data points.
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INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION

VARIATIONAL COMPLEXITY GAIN

◮ The Variational Complexity Gain after training on a

sample batch x is the change in KL Divergence:

νVCG = KLD(Pφx ||Qψx)− KLD(Pφ||Qψ)

◮ We can design P and Q to have a closed-form KLD.

Example: both Diagonal Gaussian.

◮ In non-variational settings, when using L2 regularization

(Gaussian Prior on weights), we can define the L2 Gain:

νL2G = ||θx||
2 − ||θ||2
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INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION

GRADIENT VARIATIONAL COMPLEXITY GAIN

◮ The Gradient Variational Complexity Gain is the

directional derivative of the KLD along the gradient

descent direction of the data loss:

νGVCG ∝ ∇φKLD(Pφ||Qψ) · ∇φEθ∼Pφ
[L(x, θ)]

◮ Other loss terms are not dependent on x.

◮ This gain worked well experimentally, perhaps since the

curvature of model complexity is typically flatter than loss.
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INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION

EXAMPLE EXPERIMENT: GENERATED TEXT

◮ 11 datasets were generated using increasingly complex

language models. Policies gravitated towards complexity:

Credit: Automated Curriculum Learning for Neural Networks
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INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION

EXPERIMENTAL HIGHLIGHTS

◮ Uniformly sampling across tasks, while inefficient, was a

very strong benchmark. Perhaps learning is dominated by

gradients from tasks that drive progress.

◮ For variational loss, GVCG yielded higher complexity and

faster training than uniform sampling in one experiment.

◮ Strategies observed: a policy would focus on a task until

completion. Loss would reduce on unseen (related) tasks!
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INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION

SUMMARY OF IDEAS

◮ Discussed several progress measures that can be evaluated

using training samples or one extra sample.

◮ By evaluating progress from each training example, a

multi-armed bandit determines a stochastic policy, over

which task to train from next, to maximize progress.

◮ The bandit needs to be non-stationary. Simpler tasks

dominate early on (especially for Prediction Gain), while

difficult tasks contain most of the complexity.
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INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION

TAKEAWAYS

◮ Better learning efficiency can be achieved with the right

measure of progress, but this involves experimentation.

◮ Final overall loss was better in one out of six experiments.

A research direction is to find better local minimas.

◮ Most promising: Prediction Gain for MLE problems, and

Gradient Variational Complexity Gain for VI.

◮ Variational Complexity Loss was noisy and performed

worse than its gradient analogue. Determining why is an

open question. It could be due to terms independent of x.
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EXPLORATION VS. EXPLOITATION

◮ In reinforcement learning, must maximize long-term

reward.

◮ Need to balance exploiting what we know already vs.

exploring to discover better strategies.
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MULTI-ARMED BANDIT

◮ K slot machines, each with static reward distribution pi.

◮ Policy selects machines to play given history.

◮ The nth play of machine i (∈ 1 . . .K) is a random variable

Xi,n with mean µi.

◮ Goal: Maximize total reward.
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REGRET

How do we measure the quality of a policy?

◮ Ti(n) - number of times machine i is played in first n plays.

◮ Regret: Expected under-performance compared to optimal

play. The regret after n steps is

Regret = E

[

K
∑

i=1

Ti(n)∆i

]

∆i = µ∗ − µi µ∗ = max
1≤i≤K

µi

◮ Uniform random policy: linear regret

◮ ǫ-greedy policy: linear regret
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ASYMPTOTICALLY OPTIMAL REGRET

◮ Lai and Robbins (1985) proved there exist policies with

E [Ti(n)] ≤

(

1

D(pi ‖ p∗)
+ o(1)

)

ln n

pi = probability distribution of machine i

◮ Asymptotically achieves logarithmic regret.

◮ Proved that logarithmic regret is optimal.

◮ Agrawal (1995): Asymptotically optimal policies in terms

of sample mean instead of KL divergence.
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UPPER CONFIDENCE BOUND ALGORITHMS

0.0 0.2 0.4 0.6 0.8 1.0

Distribution
Mean
Upper Confidence Bound

◮ Core idea: optimism in the face of uncertainty.

◮ Select arm with highest upper confidence bound.

◮ Assumption: distribution has support in [0, 1].
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UCB1

Initialization: Play each machine once.

Loop: Play the machine i maximizing

x̄i +

√

2 ln n

ni

x̄i - Mean observed reward from machine i.

ni - Number of times machine i has been played so far

n - Total number of plays done so far.
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UCB1 DEMO

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Selection Count: 1/3   Ratio: 0.333333
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1.0
1.5
2.0
2.5
3.0
3.5

Selection Count: 1/3   Ratio: 0.333333

0.0 0.5 1.0 1.5 2.0 2.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Selection Count: 1/3   Ratio: 0.333333
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UCB1 DEMO

0.0
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UCB1 DEMO
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UCB1 DEMO
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UCB1 DEMO
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Selection Count: 2/7   Ratio: 0.285714
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UCB1 DEMO
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Selection Count: 7/50   Ratio: 0.14
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UCB1 DEMO

0.0
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3.0
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Selection Count: 11/100   Ratio: 0.11
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Selection Count: 55/100   Ratio: 0.55
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UCB1 DEMO
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Selection Count: 32/1000   Ratio: 0.032
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Selection Count: 707/1000   Ratio: 0.707
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UCB1 DEMO
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Selection Count: 57/10000   Ratio: 0.0057
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UCB1: REGRET BOUND (THEOREM 1)

For all K > 1, if policy UCB1 is run on K machines having

arbitrary reward distributions P1, . . . ,PK with support in [0, 1],

then its expected regret after any number n of plays is at most



8
∑

i:µi<µ∗

(

ln n

∆i

)



+

(

1 +
π2

3

)

(

K
∑

i=1

∆i

)
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UCB1: DEFINITIONS FOR PROOF OF BOUND

◮ It - Indicator RV equal to the machine played at time t.

◮ X̄i,n - RV of observed mean reward from n plays of

machine i.

X̄i,n =

n
∑

t=1

Xi,t

◮ An asterisk superscript refers to the (first) optimal

machine. e.g. T∗(n) and X̄∗
n.

◮ Braces denote the indicator function of their contents.

◮ The number of plays of machine i after time n under UCB1

is therefore

Ti(n) = 1 +
n
∑

t=K+1

{It = i}
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UCB1: PROOF OF REGRET BOUND

Ti(n) = 1 +
n
∑

t=K+1

{It = i}

≤ ℓ+
n
∑

t=K+1
Ti(t−1)≥1

{It = i}

◮ Strategy: For every sub-optimal arm i, need to establish

bound on total number of plays as a function of n.

◮ Assume we have seen ℓ plays of machine i so far and

consider number of remaining plays.
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UCB1: PROOF OF REGRET BOUND

Ti(n) ≤ ℓ+
n
∑

t=K+1
Ti(t−1)≥ℓ

{It = i}

≤ ℓ+

n
∑

t=K+1
Ti(t−1)≥ℓ

{X̄∗
T∗(t−1) + ct−1,T∗(t−1) ≤ X̄i,Ti(t−1) + ct−1,Ti(t−1)}

◮ Let ct,s =
√

2 ln t
s be the UCB offset term.

◮ Machine i is selected if its UCB = X̄i,Ti(t−1) + ct−1,Ti(t−1) is

largest of all machines.

◮ In particular, must be larger than the UCB of the optimal

machine.
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UCB1: PROOF OF REGRET BOUND

Ti(n) ≤ ℓ+
n
∑

t=K+1
Ti(t−1)≥ℓ

{X̄∗
T∗(t−1) + ct−1,T∗(t−1) ≤ X̄i,Ti(t−1) + ct−1,Ti(t−1)}

≤ ℓ+
∞
∑

t=1

t−1
∑

s=1

t−1
∑

si=ℓ

{X̄∗
s + ct,s ≤ X̄i,si

+ ct,si
}

◮ Do not care about the particular number of times machine i

and machine ∗ have been seen.

◮ Probability is upper bounded by summing over all

possible assignments of T∗(t − 1) = s and Ti(t − 1) = si.

◮ Relax the bounds on t as well.
CSC2541 - Scalable and Flexible Models of Uncertainty 21/29



UCB1: PROOF OF REGRET BOUND

Ti(n) ≤ ℓ+
∞
∑

t=1

t−1
∑

s=1

t−1
∑

si=ℓ

{X̄∗
s + ct,s ≤ X̄i,si

+ ct,si
}

The event X̄∗
s + ct,s ≤ X̄i,si

+ ct,si
implies at least one of the

following:

X̄∗
s ≤ µ∗ − ct,s (1)

X̄i,si
≥ µi + ct,si

(2)

µ < µi + 2ct,si
(3)
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CHERNOFF-HOEFFDING BOUND

Let Z1, . . .Zn be i.i.d random variables with mean µ and

domain [0, 1]. Let Z̄n = 1
n(Z1 + · · ·+ Zn). Then for all a ≥ 0,

P
[

Z̄n ≥ µ+ α
]

≤ e−2na2
P
[

Z̄n ≤ µ− α
]

≤ e−2na2

Applied to inequalities (1) and (2), these give the bounds

P
[

X̄∗
s ≤ µ∗ − ct,s

]

≤ exp

(

−2s

(

2 ln t

s

))

= t−4

P
[

X̄i,si
≥ µi + ct,si

]

≤ t−4
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UCB1: PROOF OF REGRET BOUND

The final inequality, µ∗ < µi + 2ct,si
is based on the width of the

confidence interval. For t < n, it is false when si is large enough:

∆i = µ∗ − µi ≤ 2

√

2 ln t

si

⇒
∆2

i

4
≤

2 ln t

si

⇒ si <
8 ln t

∆2
i

◮ In the regret bound summation, si ≥ ℓ so we set

ℓ = 8 ln t
∆2

i

+ 1

◮ Inequality (3) then contributes nothing to the bound.
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UCB1: PROOF OF REGRET BOUND

With ℓ = 8 ln t
∆2

i

+ 1 we have the bound on E[Ti(n)]:

E[Ti(n)] ≤ ℓ+

∞
∑

t=1

t−1
∑

s=1

t−1
∑

si=ℓ

(

P
[

X̄∗
s ≤ µ∗ − ct,s

]

+ P
[

X̄i,si
≥ µi + ct,si

])

≤ ℓ+

∞
∑

t=1

t
∑

s=1

t
∑

si=1

2t−4

≤
8 ln n

∆2
i

+ 1 +
π2

3

Substituted into the regret formula, this gives our bound.
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UCB1-TUNED

◮ UCB1: E[Ti(n)] ≤
8 ln n
∆2

i

+ 1 + π2

3

◮ Constant factor 8
∆2

i

is sub-optimal. Optimal: 1
2∆2

i

.

◮ In practice the performance of UCB1 can be improved

further by using the confidence bound

X̄i,s +

√

ln n

ni
min

{

1

4
,Vi(ni)

}

where

Vi(s) =

(

1

s

s
∑

τ=1

X2
i,τ

)

− X̄2
i,s +

√

2 ln t

s

◮ No proof of regret bound.
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OTHER POLICIES

◮ UCB2: More complicated; gets arbitrarily close to optimal

constant factor on regret.

◮ UCB1-NORMAL: UCB1 adapted for normally distributed

rewards.

◮ ǫn-GREEDY: ǫ-greedy policy with decaying ǫ.

ǫn = min

{

1,
cK

d2n

}

where

c > 0 0 < d ≤ min
i:µi<µ∗

∆i
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EXPERIMENTS

Two machines:

Bernoulli 0.9 and 0.8

10 machines:

Bernoulli 0.9, 0.8, . . . , 0.8

Auer, Peter, Nicolo Cesa-Bianchi, and Paul Fischer. ”Finite-time analysis

of the multiarmed bandit problem.” Machine learning 47.2-3 (2002): 235-256.
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COMPARISONS

◮ UCB1-Tuned nearly always far outperforms UCB1

◮ ǫn-GREEDY performs very well if tuned correctly, poorly

otherwise. Also poorly if there are many suboptimal

machines.

◮ UCB1-Tuned is nearly as good as the best ǫn-GREEDY

without any tuning required.

◮ UCB2 is similar to UCB1-Tuned but slightly worse.
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OUTLINE

◮ Example problems

◮ Algorithms and applications to example problems

◮ Approximations for complex model

◮ Practical modeling considerations

◮ Limitations

◮ Further example: Reinforcement learning in Markov

Decision Problems
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EXPLOITATION VS EXPLORATION

◮ Restaurant Selection

◮ Online Banner Advertisements

◮ Oil Drilling

◮ Game Playing

◮ Multi-armed bandit problem
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FORMAL BANDIT PROBLEMS

Bandit problems can be seen as a generalization of supervised

learning, where we:

◮ Actions xt ∈ X
◮ Unknown probability distribution over rewards:

(p1, . . . , pK)

◮ Each step, pick one xt

◮ observe response yt

◮ receive the instantaneous reward rt = r(yt)

◮ the goal is to maximize mean cumulative reward E
∑

t rt
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REGRET

◮ The optimal action is x∗t = maxxt∈X E[r|xt]

◮ The regret is the opportunity loss for one step:

E[E[r|x∗t ]− E[r|xt]]

◮ The total regret is the total opportunity loss :

E[
∑t

τ=1(E[r|x∗τ ]− E[r|xτ ])]
◮ Maximize cumulative reward ≡minimize total regret
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BERNOULLI BANDIT

◮ Action: xt ∈ {1, 2, ...,K}
◮ Success probabilities: (θ1, ..., θK), where θk ∈ [0, 1]

◮ Observation:

yt =







1 w.p. θk

0 otherwise

◮ Reward: rt(yt) = yt

◮ Prior belief: θk ∼ β(αk, βk)
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ALGORITHMS

The data observed up to time t: Ht = {(x1, y1), ..., (xt−1, yt−1)}
◮ Greedy

◮ θ̂ = E[θ|Ht−1]

◮ xt = argmaxk θ̂k

◮ ǫ-Greedy

◮ θ̂ = E[θ|Ht−1]

◮ xt =







argmaxk θ̂k w.p. 1− ǫ

unif ({1, . . . ,K}) otherwise

◮ Thompson Sampling

◮ θ̂ is sampled from P(θk|Ht−1)

◮ xt = argmaxk θ̂k
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COMPUTING POSTERIORS WITH BERNOULLI BANDIT

◮ Prior belief: θk ∼ β(αk, βk)

◮ At each time period, apply action xt, reward rt ∈ {0, 1} is

generated with success probability P(rt = 1|xt, θ) = θxt

◮ Update distribution according to Baye’s rule.

◮ due to conjugacy property of beta distribution we have:

(αk, βk)←







(αk, βk) if xt 6= k

(αk, βk) + (rt, 1− rt) if xt = k.
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SIDE BY SIDE COMPARISON
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PERFORMANCE COMPARISON

(a) greedy algorithm (b) Thompson sampling

Figure: Probability that the greedy algorithm and Thompson

sampling selects an action. θ1 = 0.9, θ2 = 0.8, θ3 = 0.7
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PERFORMANCE COMPARISON

(a) θ = (0.9, 0.8, 0.7) (b) average over random θ

Figure: Regret from applying greedy and Thompson sampling

algorithms to the three-armed Bernoulli bandit.
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ONLINE SHORTEST PATH

Figure: Shortest Path Problem.
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ONLINE SHORTEST PATH - INDEPENDENT TRAVEL

TIME

Given a graph G = (V,E, vs, vd), where vs, vd ∈ V, we have that

◮ Mean travel time: θe for e ∈ E,

◮ Action: xt = (e1, ..., eM), a path from vs to vd

◮ Observation: (yt,e1
|θe1

, ..., yt,eM
|θeM

) are independent, where

ln(yt,e|θe) ∼ N(ln θe − σ̃2

2 , σ̃2), so that E[yt,e|θe] = θe

◮ Reward: rt = −
∑

e∈xt
yt,e

◮ Prior belief: ln(θe) ∼ N(µe, σ
2
e ) also independent.
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ONLINE SHORTEST PATH - INDEPENDENT TRAVEL TIME

◮ At each tth iteration with posterior parameters (µe, σe) for

each e ∈ E.

◮ greedy algorithm: θ̂e = Ep[θe] = eµe+σ2
e /2

◮ Thompson sampling: draw θ̂e ∼ logNormal(µe,σ
2
e )

◮ pick an action x to maximize Eq
θ̂
[r(yt)|xt = x] = −∑

e∈xt
θ̂e

◮ can be solved via Dijkstra’s algorithm

◮ observe yt,e, and update parameters

(µe, σ
2
e )←





1
σ2

e
µe +

1
σ̃2

(

ln yt,e +
σ̃2

2

)

1
σ2

e
+ 1

σ̃2

,
1

1
σ2

e
+ 1

σ̃2




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BINOMIAL BRIDGE

◮ apply above algorithm to a Binomial bridge with six stages

with 184,756 paths.

◮ µe = − 1
2 , σ

2
e = 1 so that E[θe] = 1, for each e ∈ E, and σ̃2 = 1

Figure: A binomial bridge with six stages.
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(a) regret (b) total travel time/optimal

Figure: Performance of Thompson sampling and ǫ-greedy algorithms

in the shortest path problem.
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ONLINE SHORTEST PATH - CORRELATED TRAVEL TIME

◮ independent θe ∼ logNormal(µe, σ
2
e )

◮ yt,e = ζt,eηtνt,ℓ(e)θe

◮ ζt,e is an idiosyncratic factor associated with edge e (road

construction/closure, accident, etc)

◮ ηt a common factor to all edges (weather, etc).

◮ ℓ(e) indicates whether edge e resides in the lower half of the

bridge

◮ νt,0, νt,1 are factors bear a common influence on edges in the

upper or lower halves (signal problems)
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ONLINE SHORTEST PATH - CORRELATED TRAVEL TIME

◮ Prior setup:

◮ take ζt,e, ηt, νt,1, νt,0 to be independent

logNormal(σ̃2/6, σ̃2/3).

◮ only need to estimate θe, and marginal yt,e|θ is the same as

independent case, but the joint distribution over yt|θ differs.

◮ Correlated observations induce dependencies in posterior,

although mean travel times are independent.
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ONLINE SHORTEST PATH - CORRELATED TRAVEL TIME

◮ Let φ, zt ∈ R
N be defined by

φe = ln θe and zt,e =

{

ln yt,e if e ∈ xt

0 otherwise.

◮ Define a |xt| × |xt| covariance matrix Σ̃ with elements

Σ̃e,e′ =















σ̃2 for e = e′

2σ̃2/3 for e 6= e′, ℓ(e) = ℓ(e′)

σ̃2/3 otherwise,

◮ for e, e′ ∈ xt, and a N ×N concentration matrix

C̃e,e′ =

{

Σ̃−1
e,e′ if e, e′ ∈ xt

0 otherwise,
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ONLINE SHORTEST PATH - CORRELATED TRAVEL TIME

◮ Apply Thompson sampling

◮ Each tth iteration, sample a vector φ̂ from N(µ,Σ), then

setting θ̂e = φ̂e for each e ∈ E.

◮ An action x is selected to maximize

Eq
θ̂
[r(yt)|xt = x] = −∑

e∈xt
θ̂e, using Djikstra’s algorithm or

an alternative.

◮ for e, e′ ∈ E. Then, the posterior distribution of φ is normal

with a mean vector µ and covariance matrix Σ that can be

updated according to

(µ,Σ)←
(

(

Σ−1 + C̃
)−1 (

Σ−1µ+ C̃zt

)

,
(

Σ−1 + C̃
)−1

)

.
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(a) regret (b) total travel time/optimal

Figure: Performance of two versions of Thompson sampling in the

shortest path problem with correlated travel time.
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APPROXIMATIONS OF POSTERIOR SAMPLING FOR

COMPLEX MODEL

◮ Gibbs Sampling

◮ Langevin Monte Carlo

◮ Sampling from a Laplace Approximation

◮ Bootstrapping
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GIBBS SAMPLING

◮ History: Ht−1 = ((x1, y1), . . . , (xt−1, yt−1))

◮ Starts with an initial guess θ0

◮ For each nth iteration, sample each kth component

according to θ̂n
k ∼ f n,k

t−1(θk)

f n,k
t−1(θk) ∝ ft−1((θ̂

n
1 , . . . , θ̂

n
k−1, θk, θ̂

n−1
k+1 , . . . , θ̂

n−1
K ))

◮ After N iterations, θ̂N is taken to be the approximate

posterior sample
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LANGEVIN MONTE CARLO

◮ Let g be the posterior distribution

◮ Euler method for stimulating Langevin daynmics:

θn+1 = θn + ǫ∇ ln g(θn) +
√
ǫWn n ∈ N

◮ W1,W2, · · · are i.i.d. standard normal random variables

and ǫ > 0 is a small step size

◮ Stochastic gradient Langevin Monte Carlo: use sampled

minibatches of data to compute approximate
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SAMPLING FROM A LAPLACE APPROXIMATION

◮ Assume posterior g is unimodal and its log density ln g(θ)

is strictly concave around its mode θ

◮ A second-order Taylor approximation to the log-density

gives

ln g(θ) ≈ ln g(θ)− 1

2
(θ − θ)⊤C(θ − θ),

where

C = −∇2 ln g(θ).

◮ Approximation to the density g using a Gaussian

distribution with mean θ and covariance C−1

g̃(θ) =
√

|C/2π|e− 1
2
(θ−θ)⊤C(θ−θ)
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BOOTSTRAPPING

◮ History: Ht−1 = ((x1, y1), . . . , (xt−1, yt−1))

◮ Uniformly sample with replacement from Ht−1

◮ Hypothetical history Ĥt−1 = ((x̂1, ŷ1), . . . , (x̂t−1, ŷt−1))

◮ Maximize the likelihood of θ under Ĥt−1

CSC2541 - Scalable and Flexible Models of Uncertainty 26/37



BERNOULLI BANDIT

Figure: Regret of approximation methods versus exact Thompson

sampling (Bernolli bandit)
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ONLINE SHORTEST PATH

Figure: Regret of approximation methods versus exact Thompson

sampling (online shortest path)
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PRACTICAL MODELING CONSIDERATIONS

◮ Prior distribution specification

◮ Constraints and context

◮ Nonstationary systems
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PRIOR DISTRIBUTION SPECIFICATION

◮ Prior: a distribution over plausible values

◮ Misspecified prior vs informative prior

◮ Thoughtful choice of prior based on past experience can

improve learning performance
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CONSTRAINTS, CONTEXT AND CAUTION

◮ Time-varying constraints

◮ e.g. road closure in online shortest path problem

◮ Use a sequence of action sets Xt that constraint action xt

and modify the optimization problem

◮ Contextual online decision problems

◮ e.g. Agent observe weather report zt before selecting a path

xt

◮ Augment the action space and introduce time-varying

constraint sets

◮ Caution against poor performance

◮ e.g. Xt = {x ∈ X : E[rt|xt = x] ≥ r}
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NONSTATIONARY SYSTEM

◮ Model parameters θ that are not constant over time

◮ Ignore historical observations made beyond some number

τ of the time periods in the past

◮ Model evolution of a belief distribution

◮ In the context of Bernoulli bandit,

(αk, βk)←







((1− γ)αk + γα, (1− γ)βk + γβ) if xt 6= k

((1− γ)αk + γα+ rt, (1− γ)βk + γβ + 1− rt) if xt = k.
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NONSTATIONARY SYSTEM

Figure: Comparison of TS vs nonstationary TS with a nonstationary

Bernoulli bandit problem
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LIMITATIONS

◮ Time-sensitive learning problems

◮ Nonstationary learning problems

◮ Problems requiring careful assessment of information gain

◮ Suppose there are k + 1 actions {0, 1, ..., k}, and θ is an

unknown parameter drawn uniformly at random from

Θ = {1, .., k}. Rewards are deterministic conditioned on θ,

and when played action i ∈ {1, ..., k} always yields reward

1 if θ = i and 0 otherwise. Action 0 is a special “revealing”

action that yields reward 1/2θ when played.
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REINFORCEMENT LEARNING IN MARKOV DECISION

PROBLEMS

◮ Action: xt ∈ A

◮ State of the system at time t: st ∈ S

◮ A response yt is observed which is dependent on xt and st

◮ An instantaneous reward is received at time t: rt = r(yt, st)

◮ The next state st+1 is dependent on xt and st
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REINFORCEMENT LEARNING IN MARKOV DECISION

PROBLEMS

◮ Objective: maximize the cumulative rewards in each

distinct episode with H timesteps:
∑K

k=1

∑H−1
h=0 r(skh, akh)

Figure: MDPs where TP every timestep leads to ineffcient exploration
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REINFORCEMENT LEARNING IN MARKOV DECISION

PROBLEMS

Figure: Comparing TS by episode or by timestep in a simple 24-state

MDP
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