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Motivation

* Active learning — A learning algorithm which is able to
interactively query for more data points for the training
process, so as to better achieve some goal.

* Actively selecting data can be useful in two cases.

* Slow/expensive measurements
* Useful data subset selection
* Basic Idea: Come up with objective functions over the input

space that quantify the information gained that will help in
actively selecting new data



Statement of the Problem: The setup ......

* Already gathered input and output pairs
Dy = {x("’),t("‘)}

 Data are modeled with an interpolant y(x; w, A)

* An interpolation model H
e architecture A
* Regularizer or prior on w
e Cost function or noise model N



Statement of the Problem: The goal

* Roughly, our goal is to pick points to add to our dataset which are
most informative in some sense.

* Depends on what we are interested in -

* Selecting new data points to be maximally informative about the values that
that model’s parameters w should take

 The above, but only concerning a region in the input space
* Selecting data to give us maximal information to discriminate between two

models.
* Possible Problem: Can our choice bias over inferences ?

* No, our Bayesian inference will be conditioned on the data so in some sense
we have marginalized out the sampling strategy



Choice of Information measure

* Measuring information gain either by calculating change in entropy or
cross entropy when we select a data point

* Change in entropy:

AS = Sy — Syt
Measure on w

* Where Sy is:

m(w)
PN (w)

SN = ]d"wPN(w) log

Probability of Parameters
before you receive the datum



Choice of Information measure

* Cross entropy:
PY Probability of Parameters before you receive the datum

!
N
G = fdkw PN*l(w)log PI;JFE‘(N:’)

|

Probability of Parameters after you receive the datum

* G’ is the KL Divergence

* Measure of how much information we gain when we are informed the true
distribution of w is PY*1(w) rather than PN (w)



Comparing Information Measures

e Change in entropy
* Shrinkage of high probability bubble region
* Invariant under translation

* Cross entropy
e Can also respond to translation

E(AS) = E(G')
where expectation is over P(t) [N + 1 datum generating
distribution]

 The above shows that E(AS) is independent of m(w) and it does not
matter which form of information we use



Review of Mackay’s Notation

exp(—=fEp(D|w. A))
Zp(5) Likelihood

P(Dl|w,3,A) =

where 3 = 1/o7, Ep =3, 5(y(xm) — ), and Zp = (27/13 :)N/ .

m 2\ I\

P(w|A, R, ) = exp(—aliy (WA R)) Prior

Regularizing Function Zw ()

where Zy = | d"w exp(—ally)



Review of Mackay’s Notation

P(D|w.3, A)P(w|a, A,R)
P(Dla,3, A, R)

P(w|D,a.3,A,R) = Posterior

M (W) =alw + 0Fp.

exp(—M(w))
ZM' ( «, ’j )

P(w|D,a, 3, A,R) =

where Zy(a.3) = [ d*w exp(—M)



ask 1: Deriving the total information gain

M(w) ~ M*(w) = M(wpmp) + %AWTAAW

k 1 .
5= 5(1 + log 2m) + 5 log (m2 det A“]) Where we used P(w) oc e=M (W)

Expandingy around wy,:

y(x) > y(x; wmp) + g(x) - Aw 8 = Oy/Ow;
If the datum t fallsin the region such that our quadraticapproximation applies

Ansi =~ A + fgg’ UVt — y(x; w))* ~ gg'

It is independent of the value that the datum t actually takes, so we can evaluate Ay qjust
by calculatingg



Task 1: Deriving the total information gain

Total information gain = %A log (m2 det A)

1
2

log(1 + fg'A'g)
Using det [A + ﬂggT] = (det A)(l + ﬁgTA_lg)

Interpretation:
* More information if low intrinsic noise
* More information if higher interpolant variance
e Assuming constant noise, this measure will most likely encourage picking
points at the edges of our current data set



Task 2: Information gain in a region of interest

* Motivation — The total information gain will encourage data selection
at edges. Redefine the problem to look at local regions

* Problem Statement - We wish to gain maximal information about the
value of the interpolant at a particular point x,)

* Again assuming quadratic approximation, the variance in interpolant
is given by

o = g(Tu)A_lg(u)



Task 2: Information gain in a region of interest

1
Marginal information gain = >Alog o2
TA-1g, 2
1=1 _ A-1_ PBAT'gg'A”! _ 1 _ (8 A™'8w)
A+Og8T] = AT T gta g = T3%8 [l o2(0% + a2)

Interpretation -
* Top term is maximal when you pick you align the input with the regional point.

* Example cases:
» Constant intrinsic noise, interpolant variance = picking a point at the sample location will

maximize correlation
* Much stronger noise at x(,;) = Denominator might overpower the numerator at x(,,); best pick

somewhere else.



Task 2: Information gain in a region of interest

* Want to construct objective function that defines information gain
for multiple points that represents a region.

* Define regional representatives with output variables {y (”)} and inputs
{xW}, where u =1...V.

e Two candidates:

* Joint information gain

» WEe'll skip this. It ends up not being useful since using maximizing this gain can create
arbitrary correlations in the representatives’ sensitivities.

 Mean Marginal information gain



Task 2: Information gain in a region of interest

Mean Marginal information Gain:

* Take a weighted average of the individual y(”)entropies
ZP S[P(y™)] = ZPH log o} + const

Mean marginal
information gain ~ 2 ZR:P « log

_(8'A gw)?
al(al + a2)

Where P, is the probability that we will be asked to predict y W



Task 2: Information gain in a region of interest

Mean Marginal information Gain:

* Two simple variations:
* 02 > 02+ 07 : This may lead to different choices if 62 < g2
« EM =¥ P, 02 : More strongly penalizes large variance



Case of linear models

y = 2wy dp(x)
* Hessian Matrix will be independent of {t}
* The sensitivities g only depend on the ¢;,.

* Consequence: we can completely specify the information gains for a
sequence of choices before even seeing the targets.



Task 3: Discriminating two models

* Again under quadratic approximation, two models will make slightly
different gaussian predictions about the value of any datum

P(t | H;) = Normal(u;, of)

i = yp;wmp(i)]
of = giA'gi+1/8

* Intuition for choice of x:

* More information when the means are well separated with respect to a scale
defined by o, and o,

» Separated variances allows us to explore different Occam factors



Task 3: Discriminating two models

weak likelihood ratio:  P(t | H1)/P{t | Ha)

Z(

E(AS)

ot

S = —Y;P(H;)log P(H;)

P(H1)P(H>)

2

1

ot

or IMI*M21<<Uh

1 2
+cr_§ (1 — p2)” +

02

2 2
day — 0y

0102

)T
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- Figure 1: Demonstration of total and marginal information gain. (a) The data
set, the interpolant, and error bars. (b) The expected total information gain
and three marginal information gains. (c) The mean marginal information gain,
with the region of interest defined by 300 equally spaced points on the interval
: - [-2.1,4.1]. The information gains are shown on a scale of nats (1 nat = log, e
Badlh o K bits).
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The Achilles' Heel

* We have been assuming the models have been correct.

* Incorrect models can result in blowup away from region of interest

 Example: Predicting accurately at xW with a linear model on
quadratic data
* Information gained encourages us to take points as far away as possible

* This contradicts what will be most informative here which is sampling values
close to xW

* Further research: information gain in the context of approximate
models



Complexity

* The task of computing for example the mean marginal likelihood is
cheaper than computing + inverting the Hessian

 O(Nk”2)+0O(k”3) and O(Ck~2) + O(CVk), respectively. C = # of candidate points,
V = # of region defining points.



Summary

* We defined 3 objective functions over x (total, marginal, mean
marginal information gains) to address different contexts (maximizing
information in total, at a point, and at a set of points).

* Requires validity of the quadratic/local Gaussian approximation of the
cost function M(w).

* Weakness: assumption that models are correct.
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INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION
: :

AUTOMATED CURRICULUM LEARNING

» Interest in curriculums resurfaced in 2009 (Bengio et al.)
» Manually steering models to train on gradually more
difficult tasks achieved faster convergence.
» Core idea for Automated Curriculum Learning;:
Given a dataset of input-output pairs {x, ¥} and a model
that has trained on {x|o. N}, ¥(0..n]}, learn to choose the next

training example {Xn41, yn+1} that maximizes learning.

(CSC2541 - Scalable and Flexible Models of Uncertainty



INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION

AUTOMATED CURRICULUM LEARNING

» Cast curriculum learning as a Multi-Armed Bandit:

Curriculum with N tasks as a N-Armed Bandit

v

» No assumptions made about rewards (”adversarial”).
» An agent selects an arm and observes its payoff,

while the other payoffs are not observed.

>

(CSC2541 - Scalable and Flexible Models of Uncertainty

Adaptive policy seeks to maximize payoff from bandit.




INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION
: :

THE EXP3 ALGORITHM FOR ADVERSARIAL BANDITS

» Goal: Minimize regret with respect to best arm.
» Chooses arm i according to policy m; with probability:
Exp3 . evni
Tt y (i) = N _w
2= €™

» where w; ; are weights calculated as a sum of

historically-observed, importance-sampled rewards:

Wi =M § Tsi

s<t

- Exp3 .
Tsi= rsl[as:i} /s " (i)

(CSC2541 - Scalable and Flexible Models of Uncertainty



INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION
: :

WEAKNESSES OF EXP3: SHIFTING REWARDS

» Exp3 closely matches the best single arm strategy over the
whole trajectory.
» For curriculum learning, a good strategy often changes:

» Easier cases in training data will provide high rewards
during early training, but have diminishing returns.

» Over time, more difficult cases will provide higher rewards.

(CSC2541 - Scalable and Flexible Models of Uncertainty



INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION

THE EXP3.S ALGORITHM FOR SHIFTING REWARDS

» Addresses issues of Exp3 by encouraging exploration with
probability € and by mixing weights additively:
Exp3.S . etni €
™ D=1—-¢€¢)——— + =
=09

wy; = log [(1 — o) exp <wt_1,i + 77?,3_171->

g o exp (i + 1’])]

J#l
» This effectively decays the importance of old rewards and

allows the model to react faster to changing scenarios.

(CSC2541 - Scalable and Flexible Models of Uncertainty



INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION
:

LEARNING A SYLLABUS OVER TASKS

» Given: separate tasks with unknown difficulties

» We want to maximize the rate of learning;:

1. At each timestep t, we sample a task index k from 7.
2. We then sample a data batch from this task: {x[0 B I[(O..B]}

3. A measure of learning progress v and the effort 7

(computation time, input size, etc.) are calculated.
4. The rate of learning is r; = Z and is re-scaled to [—1,1].

5. Parameters w of the policy 7 are updated using Exp3.S

(CSC2541 - Scalable and Flexible Models of Uncertainty



INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION

LEARNING PROGRESS MEASURES

» Itis computationally expensive (or intractable) to measure

the global impact of training on a particular sample.

» We desire proxies for progress that depend only on the
current sample or a single extra sample.
» The paper proposes two types of progress measures:

» Loss-driven: compares predictions before/after training.

» Complexity-driven: information theoretic view of learning.

(CSC2541 - Scalable and Flexible Models of Uncertainty



INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION
: :

PREDICTION GAIN

» Prediction Gain is the change in sample loss before and

after training on a sample batch x:
vpg = L(x,0) — L(x, 6y)
» Moreover, when training using gradient descent:
Af o< =VL(x,0)
» Hence, we have a Gradient Prediction Gain approximation:

vGpG = L(x, 9) — L(x, Hx)
~ —VL(x,0) - A¢
oc ||VL(x,0)[]?

(CSC2541 - Scalable and Flexible Models of Uncertainty



INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION
: :

BIAS-VARIANCE TRADE-OFF

» Prediction Gain is a biased estimate of the expected change

in loss due to training on a sample x:

Ex/NTuskk [L(X,, 0) - L(x/’ Qx)]

» In particular, it favors tasks that have high variance.

» This is since sample loss decreases after training, even

though loss for other samples from the task could increase.

» An unbiased estimate is the Self Prediction Gain:
vspg = L(x’, 9) — L(x', Hx), X, ~ Dk

» vspc has naturally higher variance due to sampling of x’

(CSC2541 - Scalable and Flexible Models of Uncertainty



INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION
:

SHIFTING GEARS: COMPLEXITY IN STOCHASTIC VI

» Consider the objective in stochastic variational inference,
where P, is a variational posterior over parameters ¢ and

Qy is a prior over 6:

Data Compression under P,

Lyi = KLD(Py||Qy) + ZE9~P¢ x,0)]
S D

Model Complexity

» Training trades-off better ability to compress data with
higher model complexity. We expect that complexity

increases the most from highly generalizable data points.

(CSC2541 - Scalable and Flexible Models of Uncertainty



INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION
: :

VARIATIONAL COMPLEXITY GAIN

» The Variational Complexity Gain after training on a

sample batch x is the change in KL Divergence:

vvee = KLD(Pg, [[Qy,) — KLD(Py||Qy)

» We can design P and Q to have a closed-form KLD.

Example: both Diagonal Gaussian.

» In non-variational settings, when using L2 regularization

(Gaussian Prior on weights), we can define the L2 Gain:

viaG = ||6x]* — 1161

(CSC2541 - Scalable and Flexible Models of Uncertainty



INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION
: :

GRADIENT VARIATIONAL COMPLEXITY GAIN

» The Gradient Variational Complexity Gain is the
directional derivative of the KLD along the gradient

descent direction of the data loss:

veveg X VyKLD(Py||Qy) - VgEgp, [L(x, 0)]

» Other loss terms are not dependent on x.

» This gain worked well experimentally, perhaps since the

curvature of model complexity is typically flatter than loss.

(CSC2541 - Scalable and Flexible Models of Uncertainty



INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION
:

EXAMPLE EXPERIMENT: GENERATED TEXT

» 11 datasets were generated using increasingly complex

language models. Policies gravitated towards complexity:

Prediction Gain (PG) 4o Gradient Prediction Gain (GPG)

10 Zo — S
Time # — 10gr
CG) Giadient Variational Complexity Gain (GVCG)

— ogram

Time
1 Complexity Gain (V¢

Time 4
Lo Self Prediction Gain (SPG) ., Target Prediction Gain (TPG)




INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION
: :

EXPERIMENTAL HIGHLIGHTS

» Uniformly sampling across tasks, while inefficient, was a
very strong benchmark. Perhaps learning is dominated by

gradients from tasks that drive progress.

» For variational loss, GVCG yielded higher complexity and

faster training than uniform sampling in one experiment.

» Strategies observed: a policy would focus on a task until

completion. Loss would reduce on unseen (related) tasks!

(CSC2541 - Scalable and Flexible Models of Uncertainty



INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION

SUMMARY OF IDEAS

» Discussed several progress measures that can be evaluated

using training samples or one extra sample.

» By evaluating progress from each training example, a
multi-armed bandit determines a stochastic policy, over

which task to train from next, to maximize progress.

» The bandit needs to be non-stationary. Simpler tasks
dominate early on (especially for Prediction Gain), while

difficult tasks contain most of the complexity.

(CSC2541 - Scalable and Flexible Models of Uncertainty



INTRODUCTION BANDITS SYLLABUS MEASURES EXPERIMENTS CONCLUSION
: :

TAKEAWAYS

» Better learning efficiency can be achieved with the right

measure of progress, but this involves experimentation.

» Final overall loss was better in one out of six experiments.

A research direction is to find better local minimas.

» Most promising: Prediction Gain for MLE problems, and
Gradient Variational Complexity Gain for VI.

» Variational Complexity Loss was noisy and performed

worse than its gradient analogue. Determining why is an

open question. It could be due to terms independent of x.

(CSC2541 - Scalable and Flexible Models of Uncertainty



Finite-time Analysis of the Multiarmed
Bandit Problem
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October 20, 2017

(CSC2541 - Scalable and Flexible Models of Uncertainty



EXPLORATION VS. EXPLOITATION

» In reinforcement learning, must maximize long-term

reward.

» Need to balance exploiting what we know already vs.

exploring to discover better strategies.

(CSC2541 - Scalable and Flexible Models of Uncertainty



MULTI-ARMED BANDIT
1 2 K

= (= wmf
Sequenceom

returns: X, X, . X, . X, ...

» K slot machines, each with static reward distribution p;.

» Policy selects machines to play given history.

» The n'" play of machine i (€ 1...K) is a random variable
X, with mean ;.

» Goal: Maximize total reward.

(CSC2541 - Scalable and Flexible Models of Uncertainty



REGRET

How do we measure the quality of a policy?
» T;(n) - number of times machine i is played in first n plays.

» Regret: Expected under-performance compared to optimal

play. The regret after n steps is

K
Regret = E [Z Ti(n)A;

A= u* — —
i= 0 = M W 1123)( i

» Uniform random policy: linear regret

» e-greedy policy: linear regret

(CSC2541 - Scalable and Flexible Models of Uncertainty



ASYMPTOTICALLY OPTIMAL REGRET

v

Lai and Robbins (1985) proved there exist policies with

E[Ti(n)] < (W + 0(1)) Inn

pi = probability distribution of machine i

v

Asymptotically achieves logarithmic regret.

v

Proved that logarithmic regret is optimal.

v

Agrawal (1995): Asymptotically optimal policies in terms

of sample mean instead of KL divergence.

(CSC2541 - Scalable and Flexible Models of Uncertainty



UPPER CONFIDENCE BOUND ALGORITHMS

= Distribution
= Mean
=+ Upper Confidence Bound

» Core idea: optimism in the face of uncertainty.
» Select arm with highest upper confidence bound.

» Assumption: distribution has support in [0, 1].

(CSC2541 - Scalable and Flexible Models of Uncertainty



UCB1

Initialization: Play each machine once.

Loop: Play the machine i maximizing

2lnn

Xi

n;

X; - Mean observed reward from machine i.
n; - Number of times machine 7 has been played so far

n - Total number of plays done so far.

(CSC2541 - Scalable and Flexible Models of Uncertainty



UCB1 DEMO

Selection Count: 1/3 Ratio: 0.333333

Selection Count: 1/3 Ratio: 0.333333

1 0.333333

(CSC2541 - Scalable and Flexible Models of Uncertainty
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UCB1 DEMO

Selection Count: 1/4 Ratio: 0.25

Selection Count: 2/4 Ratio: 0.5

3.0 .
.

Selection Count: 1/4 Ratio: 0.25

.
3.0 .

0.0 0.5 1.0 15 2.0 2.5




UCB1 DEMO

Selection Count: 1/5 Ratio: 0.2

Selection Count: 2/5 Ratio: 0.4

Selection Count: 2/5 Ratio: 0.4

2.5
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UCB1 DEMO

Selection Count: 2/6 Ratio: 0.333333
|

!

|

Selection Count: 2/6 Ratio: 0.333333

.
3.0 L
.
25 I
2.0 -
15 I
10
.
05
0.0 I

Selection Count: 2/6 Ratio: 0.333333
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UCB1 DEMO

Selection Count: 2/7 Ratio: 0.285714
!

!

|
Selection Count: 3/7 Ratio: 0.428571
o : !

!

|

S.election Count: 2/7 Ratio: 0.285714

(CSC2541 - Scalable and Flexible Models of Uncertainty



UCB1 DEMO

Selection Count: 7/50 Ratio: 0.14

Selection Count: 18/50 Ratio: 0.36

13/29



UCB1 DEMO

Selection Count: 11/100 Ratio: 0.11

35

Selection Count: 34/100 Ratio: 0.34

35 . .

3.0 .
"
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UCB1 DEMO

Selection Count: 32/1000 Ratio: 0.032

(CSC2541 - Scalable and Flexible Models of Uncertainty



UCB1 DEMO

Selection Count: 57/10000 Ratio: 0.0057

Selection Count: 931/10000 Ratio: 0.0931

Selection Count: 9012/10000 Ratio: 0.9012

(CSC2541 - Scalable and Flexible Models of Uncertainty 16/29



UCB1: REGRET BOUND (THEOREM 1)

For all K > 1, if policy UCB1 is run on K machines having
arbitrary reward distributions Py, ..., Px with support in [0, 1],

then its expected regret after any number 7 of plays is at most

T (5] -0+9) (22)

i <p*

(CSC2541 - Scalable and Flexible Models of Uncertainty



UCB1: DEFINITIONS FOR PROOF OF BOUND

» I; - Indicator RV equal to the machine played at time .

» X;n- RV of observed mean reward from n plays of

machine 7.
n
Xin = Z Xt
t=1

» An asterisk superscript refers to the (first) optimal

machine. e.g. T*(n) and X,
» Braces denote the indicator function of their contents.
» The number of plays of machine 7 after time n under UCB1

is therefore

Tm=1+ 3 (L=

t=K+1

(CSC2541 - Scalable and Flexible Models of Uncertainty



UCB1: PROOF OF REGRET BOUND

Tm=1+ 3 (L=

t=K+1

n
<t+ > {Lh=i}
t=K+1
Ti(t-1)>1

» Strategy: For every sub-optimal arm i, need to establish

bound on total number of plays as a function of n.

» Assume we have seen / plays of machine i so far and

consider number of remaining plays.

(CSC2541 - Scalable and Flexible Models of Uncertainty



UCB1: PROOF OF REGRET BOUND

n
Tin) <+ Y {li=i}
t=K+1
Ti(t—1)>¢

n
<{+ Z {X?*(t_l) +o1re-1) < Xi,T,-(tq) +ci1,1i(0-1) }
t=K+1

Ti(t=1)=¢
> Letcs = % be the UCB offset term.
» Machine i is selected if its UCB = Xijl.(t,l) + 1,161 18
largest of all machines.

» In particular, must be larger than the UCB of the optimal

machine.
(CSC2541 - Scalable and Flexible Models of Uncertainty




UCB1: PROOF OF REGRET BOUND

n
Ti(n) <+ Z {XT*t 1) T (-1) < < Xi1y(t-1) F G-, To(t-1)

t=K+1
Ti(t=1)=¢

oo t—1 t—1

<£+ZZZ{X +Cts§X15,+CtS}

t=1 s=1 s;=¢

» Do not care about the particular number of times machine i
and machine * have been seen.
» Probability is upper bounded by summing over all

possible assignments of T*(f — 1) =sand Ti(t — 1) = s;.

» Relax the bounds on t as well.
(CSC2541 - Scalable and Flexible Models of Uncertainty




UCB1: PROOF OF REGRET BOUND

oo t—1 t—1

<€+ZZZ{X +Ci’SSXZS +CtS}

t=1 s=1 s;=

The event X; + ¢t < X;5, + ¢t 5, implies at least one of the

following:
X: <pt - Cts 1)
Xi,si Z MZ + Ct,S,' (2)
p< i+ 2ctg; ®)

(CSC2541 - Scalable and Flexible Models of Uncertainty



CHERNOFF-HOEFFDING BOUND

Let Z4,...Z, beii.d random variables with mean p and
domain [0,1]. Let Z, = }(Z; + - - + Zy). Then for alla > 0,

2 —

PlZ,<p—a] < e 2na

PlZy>pu+a] <e
Applied to inequalities (1) and (2), these give the bounds

PX:<p*—cs] <exp (—Zs <lent>> =4

P [Xi,Sj > i+ Ct,s,-] < 4

(CSC2541 - Scalable and Flexible Models of Uncertainty



UCB1: PROOF OF REGRET BOUND
The final inequality, u* < p; 4 2c; s, is based on the width of the

confidence interval. For t < n, it is false when s; is large enough:

2Int

Si
A2 21nt
4 - S;
8Int
A2

Aj=p" —p <2

=5 <

» In the regret bound summation, s; > ¢ so we set
/= 8 lnt

> Inequahty (3) then contributes nothing to the bound.

(CSC2541 - Scalable and Flexible Models of Uncertainty



UCB1: PROOF OF REGRET BOUND

With ¢ = 8§th + 1 we have the bound on E[T;(n)]:

oo t—1 t—1
E[Ti(n)] <+ Y > > (P[X: < p —crs] + P [Xig, > pi+cs))
t=1 s=1 s;=¢
00 t t
<O+ N> ot
t=1 s=1s;=1
8lnn 2

<— +1+—

Substituted into the regret formula, this gives our bound.

(CSC2541 - Scalable and Flexible Models of Uncertainty



UCB1-TUNED

» UCB1: E[T;(n)] < 882 + 1+ %

» Constant factor -2 N is sub -optimal. Optimal: 5 AZ

» In practice the performance of UCB1 can be improved

further by using the confidence bound

- Inn . 1
Xis +\/ o mln{4,Vi("z’)}
1o - [2Int
=1

» No proof of regret bound.

where
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OTHER POLICIES

» UCB2: More complicated; gets arbitrarily close to optimal

constant factor on regret.

» UCB1-NORMAL: UCBI1 adapted for normally distributed

rewards.

» ¢,-GREEDY: e-greedy policy with decaying e.
. cK
€, = miny 1, 2
where

c>0 0<d< min A
Lp<p*
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EXPERIMENTS

100,

~+ UCB2 0=0.001
—+— UCB-tuned
g0l| —— e~GREEDY c=0.05
—— &-GREEDY ¢=0.10

-+ UCB2 a=0.001
—+— UCB-tuned
90| —— e~GREEDY ¢=0.05
—— e~GREEDY ¢=0.10

2 goll - e-GREEDY c=0.15 7/ g, > ¢-GREEDY c=0.15
s & 60

2 2

2 =

s

: L

z

2 2

® i

20|

490 0 o 1 2 3 a s
10 10' 10* 10° 10 10° 10 10 10 0 10 10
plays plays
Two machines: 10 machines:
Bernoulli 0.9 and 0.8 Bernoulli 0.9, 0.8, ...,0.8

Auer, Peter, Nicolo Cesa-Bianchi, and Paul Fischer. ”Finite-time analysis
of the multiarmed bandit problem.” Machine learning 47.2-3 (2002): 235-256.
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COMPARISONS

» UCB1-Tuned nearly always far outperforms UCB1
» ¢,-GREEDY performs very well if tuned correctly, poorly

otherwise. Also poorly if there are many suboptimal
machines.
» UCBI1-Tuned is nearly as good as the best ¢,-GREEDY

without any tuning required.

» UCB2 is similar to UCB1-Tuned but slightly worse.
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A Tutorial on Thompson Sampling
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OUTLINE

» Example problems

» Algorithms and applications to example problems
» Approximations for complex model

» Practical modeling considerations

» Limitations

» Further example: Reinforcement learning in Markov

Decision Problems
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EXPLOITATION VS EXPLORATION

Restaurant Selection

v

Online Banner Advertisements
Oil Drilling
Game Playing

v

v

v

» Multi-armed bandit problem
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FORMAL BANDIT PROBLEMS

Bandit problems can be seen as a generalization of supervised
learning, where we:
» Actionsx; € X

» Unknown probability distribution over rewards:

(1, px)
Each step, pick one x;

v

v

observe response y;

» receive the instantaneous reward r; = r(y;)

v

the goal is to maximize mean cumulative reward E) ", r;
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REGRET

v

The optimal action is x; = maxy,cx E[r|x]

v

The regret is the opportunity loss for one step:
E[E[r|x;] — Elr|x]]

v

The total regret is the total opportunity loss :
E[Y 1 (Elrlx;] — Efrlx))]

» Maximize cumulative reward = minimize total regret
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BERNOULLI BANDIT

» Action: x; € {1,2,...,K}
» Success probabilities: (61, ..., 0x), where 6; € [0, 1]
» Observation:

1 w.p. 0

Ye=

0 otherwise
» Reward: r:(y;) = y:
» Prior belief: 6, ~ (o, Br)
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ALGORITHMS

The data observed up to time t: H; = {(x1,y1), ..., (x¢—1, Y1) }

» Greedy
> 0 = E[[H;]
> Xx; = argmax 0
> e-Greedy
> 0 = E[[H; ]
. — argmax;, 9k wp.1—¢€

unif({1,...,K}) otherwise
» Thompson Sampling
» Ois sampled from P(6;|H;_1)

> x; = argmax; O
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COMPUTING POSTERIORS WITH BERNOULLI BANDIT

v

Prior belief: 6, ~ B(ax, Bi)

v

At each time period, apply action x;, reward r; € {0,1} is
generated with success probability P(r; = 1|x¢, 0) = 0,

v

Update distribution according to Baye’s rule.

v

due to conjugacy property of beta distribution we have:

(Oék,,Bk) if Xt 7é k

(v, Br)
(o, Be) + (re, 1 — 1) ifxp = k.
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SIDE BY SIDE COMPARISON

Algorithm 1 BernGreedy(K, «, )

Algorithm 2 BernThompson(K, a, 3)

10:
11:
12:
13:

1:
23
3
4:
5:
6
it
8
9

fort=1,2,... do
#estlmate model:

fork=1,...,K do
Ok <+ ag/ (o + Br)
end for

#select and apply action:
Ty ¢ argmaxy, 0y,
Apply z; and observe r;

#update distribution:

(azt7 Bz:) b (az:a /th ) I
end for

(re, 1—m4)

1: fort=1,2,...do

2 #sample model:

3: for k=1,...,K do

4: Sample ék ~ beta(ay, Bk)
5: end for

6:

7 #select and apply action:

8: Ty $— argmaxy ék

9: Apply x; and observe ry

10:

11: #update distribution:

12: (O‘Zt,:BZ:) A\ (O‘It’BZz)+(Tt1 I_Tt)
13: end for




PERFORMANCE COMPARISON

— action 1
— action 2
08 — action 3 08
> >
= A=
S os S os _
o o — action 1
< < — action 2
o o — action 3
< 04 < 04
kel 2
£ 2
o o
© ©
0.2 0.2 L
0.0 0.0
200 400 600 800 1000 200 400 600 800 1000
time ¢ time ¢
(a) greedy algorithm (b) Thompson sampling

Figure: Probability that the greedy algorithm and Thompson

sampling selects an action. ¢; = 0.9,6, = 0.8,63 = 0.7
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PERFORMANCE COMPARISON

0.30 —— Thompson
— Thompson — greedy
— greedy 025
0.25
= __ 020
3 0.20 §
z T o1s
& 0.15 qa)g
15 -7
ﬁ W 0.10
T’ 010
0.05
0.05
0.00
0.00 200 400 600 800 1000
200 400 . 600 800 1000 tlme ¢
time ¢
_ (b) average over random 6
(@) 8 = (0.9,0.8,0.7) 8

Figure: Regret from applying greedy and Thompson sampling
algorithms to the three-armed Bernoulli bandit.
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ONLINE SHORTEST PATH

Figure: Shortest Path Problem.
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ONLINE SHORTEST PATH - INDEPENDENT TRAVEL
TIME

Given a graph G = (V, E, vs,v;), where v5,v; € V, we have that

» Mean travel time: 6, fore € E,

v

Action: x; = (eq, ...,epm), a path from v to vy

v

Observation: (Y e, |0e;s -+, Yt.ey|0ey) are independent, where
In(yrele) ~ N(Infe — % ,52), so that E[y;.c[0c] = 0

v

Reward: rr = — > ¢ Ve

>

(CSC2541 - Scalable and Flexible Models of Uncertainty
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ONLINE SHORTEST PATH - INDEPENDENT TRAVEL TIME

» At each tth iteration with posterior parameters (., o,) for
eache € E.
> greedy algorithm: 0, = E,[0,] = et to:/2
» Thompson sampling: draw 6, ~ logNormal(yz.,02)
» pick an action x to maximize Eg, [r(y:)[x: = x] = — 3_ ¢, 0,

» can be solved via Dijkstra’s algorithm

» observe y; ., and update parameters

=2
Uigzue + 2 <lnyt7e + ”7) 1

2
(M6’02)<_ L+L ’L_f_i
o? 52 o? 52
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BINOMIAL BRIDGE

» apply above algorithm to a Binomial bridge with six stages
with 184,756 paths.
> e = —%,03 = 1so that E[¢,] = 1, for eache € E, and 5% = 1

Figure: A binomial bridge with six stages.
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(a) regret (b) total travel time/optimal

Figure: Performance of Thompson sampling and e-greedy algorithms
in the shortest path problem.
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ONLINE SHORTEST PATH - CORRELATED TRAVEL TIME

» independent 6, ~ logNormal(y,, o2)

> Yte = Ct,entl/t,é(e)ee
» (i .1s an idiosyncratic factor associated with edge e (road
construction/closure, accident, etc)
» 1, a common factor to all edges (weather, etc).
» {(e) indicates whether edge e resides in the lower half of the
bridge
» 140, 1 are factors bear a common influence on edges in the

upper or lower halves (signal problems)
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ONLINE SHORTEST PATH - CORRELATED TRAVEL TIME

» Prior setup:
» take (i, 1, V11, 110 to be independent
logNormal(5%/6,52/3).
» only need to estimate 6,, and marginal y, .| is the same as
independent case, but the joint distribution over y;|6 differs.
» Correlated observations induce dependencies in posterior,

although mean travel times are independent.
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ONLINE SHORTEST PATH - CORRELATED TRAVEL TIME
» Let ¢,z € RN be defined by

Iny;, ife € x;

0 otherwise.

¢ = In b, and Zte = {

» Define a |x;| X |x¢| covariance matrix ¥ with elements

52 fore =¢
See =14 25%/3 fore # ¢, 6(e) = (()
52/3 otherwise,

» fore,e € x;, and a N x N concentration matrix

G >l ife,e’ € x;
el — ’ .
0 otherwise,
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ONLINE SHORTEST PATH - CORRELATED TRAVEL TIME

» Apply Thompson sampling

» Each tth iteration, sample a vector ¢ from N(u, ¥), then
setting 0, = ée foreache € E.

» An action x is selected to maximize
Eg, [r(ye)lxe = x] = =3 _.c,, 0., using Djikstra’s algorithm or
an alternative.

» fore,e’ € E. Then, the posterior distribution of ¢ is normal
with a mean vector i and covariance matrix ¥ that can be

updated according to

o e ((5740) (s ta) (57 4) ).
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— thoughtful likelihood — thoughtful likelihood
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o
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(a) regret (b) total travel time/optimal

Figure: Performance of two versions of Thompson sampling in the

shortest path problem with correlated travel time.
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APPROXIMATIONS OF POSTERIOR SAMPLING FOR
COMPLEX MODEL

v

Gibbs Sampling

v

Langevin Monte Carlo

v

Sampling from a Laplace Approximation

v

Bootstrapping
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GIBBS SAMPLING

v

History: H;_1 = ((x1,y1), .-, (X1, Y¢-1))

v

Starts with an initial guess ¢°

For each n'" iteration, sample each k' component

v

according to 0 ~ K (0)

FRO) o< fia (07, ..., 001, 0, 00), L 05

v

After N iterations, #N is taken to be the approximate

posterior sample
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LANGEVIN MONTE CARLO

v

Let g be the posterior distribution

v

Euler method for stimulating Langevin daynmics:

Opi1 =0y +€eVIng(6,) + eW, neN

v

Wy, Wo, - - - areii.d. standard normal random variables

and € > 0 is a small step size

v

Stochastic gradient Langevin Monte Carlo: use sampled

minibatches of data to compute approximate
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SAMPLING FROM A LAPLACE APPROXIMATION

» Assume posterior g is unimodal and its log density In g(6)

is strictly concave around its mode
» A second-order Taylor approximation to the log-density
gives
_ 1 _ _
Ing(0) ~ Ing(6) — 5(¢ - 6)" C(6 - 0),
where

C=-V2Ing(d).

» Approximation to the density g using a Gaussian

distribution with mean 6 and covariance C~1

3(0) = \/|C/2xle20-0)TC(O-0)
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BOOTSTRAPPING

v

HiStOI'YI Ht,1 = ((xl,yl), ey (xt,l,yt,l))

v

Uniformly sample with replacement from H;_

v

Hypothetical history H; 1 = ((%1,91), .-, %—1,7¢-1))

Maximize the likelihood of 6 under H;_;

>
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BERNOULLI BANDIT

0.30 -
— Thompson
— Laplace
0.25 bootstrap
0.20
=
>
=
5
L 015
3
)
-p
u 0.10
0.05
0.00 - :
0 200 400 600 800 1000

day t

Figure: Regret of approximation methods versus exact Thompson
sampling (Bernolli bandit)
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ONLINE SHORTEST PATH

14

— Thompson
Gibbs
12 — bootstrap

E[regret;(6)]

- 200 300 400 500
day ¢

Figure: Regret of approximation methods versus exact Thompson

sampling (online shortest path)
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PRACTICAL MODELING CONSIDERATIONS

» Prior distribution specification
» Constraints and context

» Nonstationary systems
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PRIOR DISTRIBUTION SPECIFICATION

» Prior: a distribution over plausible values
» Misspecified prior vs informative prior

» Thoughtful choice of prior based on past experience can

improve learning performance
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CONSTRAINTS, CONTEXT AND CAUTION

» Time-varying constraints
» e.g. road closure in online shortest path problem
» Use a sequence of action sets X; that constraint action x;
and modify the optimization problem
» Contextual online decision problems
» e.g. Agent observe weather report z; before selecting a path
Xt
» Augment the action space and introduce time-varying
constraint sets
» Caution against poor performance
»eg X ={xe X :E[rnx, =x] >r}
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NONSTATIONARY SYSTEM

» Model parameters 6 that are not constant over time

» Ignore historical observations made beyond some number
7 of the time periods in the past
» Model evolution of a belief distribution

» In the context of Bernoulli bandit,

(1= y)ex +va, (1 —v)Bc +7B) if x; # k
(A= +vya+r,(1—7)p+18+1—r) ifx =k

(v, Br)
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NONSTATIONARY SYSTEM

0.30

— stationary TS
— nonstationary TS

0.25 1

0.20

0.15

Flregret(0)]

0.10

0.05 L/ w

0.00
0

500 1000 1500 2000
time ¢

Figure: Comparison of TS vs nonstationary TS with a nonstationary

Bernoulli bandit problem
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LIMITATIONS

» Time-sensitive learning problems

» Nonstationary learning problems
» Problems requiring careful assessment of information gain
» Suppose there are k + 1 actions {0, 1, ...,k}, and 6 is an
unknown parameter drawn uniformly at random from
© = {1,..,k}. Rewards are deterministic conditioned on 6,
and when played action i € {1, ..., k} always yields reward
1if § = i and 0 otherwise. Action 0 is a special “revealing”

action that yields reward 1/20 when played.
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REINFORCEMENT LEARNING IN MARKOV DECISION
PROBLEMS

v

Action: x; € A

v

State of the system at time t: 5; € S

v

A response y; is observed which is dependent on x; and s;

» An instantaneous reward is received at time t: r; = (v, s5¢)

v

The next state s;, 1 is dependent on x; and s;
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REINFORCEMENT LEARNING IN MARKOV DECISION
PROBLEMS

» Objective: maximize the cumulative rewards in each

distinct episode with H timesteps: Zle Zf:_ol 7(Skis Axn)

0T TWEOW WD
MONOTOMMON

Figure: MDPs where TP every timestep leads to ineffcient exploration
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REINFORCEMENT LEARNING IN MARKOV DECISION
PROBLEMS

1.00+ i
Algorithm
— TS (timestep)
— TS (episode)
0.754
=
>
=
ey
£ 050
a0
(5}
o=
&
0.254
0.00+
0 10000 20000 30000
Episode t

Figure: Comparing TS by episode or by timestep in a simple 24-state
MDP
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