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Exponential family

Exponential family plays a very important role in statistics and it has many
good properties.

1 Most of the commonly used distributions are in the exponential family,
like, Gaussian, multinomial, exponential, Dirichlet, Poisson, Gamma...

2 Also, some are not in the exponential family: Cauchy, uniform...
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Exponential family: definition

The exponential family is defined as the following form:

p(x |η) = exp{ηTT (x)− A(η)}

1 η ∈ Rd , the natural parameters.

2 T : X → Rd , the sufficient statistic.

3 A(η) = ln
∫
X exp{ηTT (x)}dµ(x), the log normalizer. (µ is the base

measure on a space X )

Sometimes, it will be convenient to use a base measure function
h(x) : X → R+, and define:

p(x|η) = h(x)exp{ηTT (x)− A(η)}

, though h can always be included in µ.
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Exponential family: examples

Categorical distribution is a discrete probability distribution that describes
the possible results of a random event that can be on one of K possible
outcomes. It is defined as:

1 Parameters: k (#categories); µ1, ..., µk (event probabilities, µi > 0
and

∑
µi = 1)

2 Support set: x ∈ {1, ..., k}
3 PMF: p(x) = µx1

1 · · · µxk
k , (here, we overload x as

([x = 1], ..., [x = k]))

4 Mode: i when pi = max(µ1, ..., µk )
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Exponential family: examples

We can write the pmf in the standard representation:

p(x |µ) =
∏k

i=1 µ
xi
i = exp{∑k

i=1 xi lnµi}

, where x = (x1, ..., xk )T , and it also can be written as:

p(x |µ) = exp{∑k−1
i=1 xi lnµi + (1−∑k−1

i=1 xi ) ln(1−∑k−1
i=1 µi )}

= exp{∑k−1
i=1 xi ln( µi

1−∑k−1
i=1 µi

) + ln(1−∑k−1
i=1 µi )}

Now, we can identify that:

ηi = ln( µi
1−∑j µj

), T (x) = x , A(η) = ln(1 +
∑k−1

i=1 exp(ηi )), h(x) = 1

Then,

p(x |µ) = p(x |η) = 1 · exp{ηTT (x)− A(η)}
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Exponential family: property

Exponential family has some properties.

1 DKL(p(x |η1)||p(x |η2)) = (η1 − η2)T∇A(η1)− A(η1) + A(η2)

2 A(η) is convex.

3 ∇A(η) = E[T (x)] ≈ 1
N

∑
i T (x (i))

4 ∇2A(η) = E[T (x)T (x)T ]− E[T (x)]E[T (x)T ] = Var [T (x)]
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Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a generative probabilistic model for
collections of discrete data such as text corpora.
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LDA: process

The generative process of LDA model can be summarized as:

1 Draw topics βk from Dirichlet(η, ..., η) for k ∈ {1, ...,K}
2 For each document d ∈ {1, ...,D} :

1 Draw topic proportions θd from Dirichlet(α, ..., α)
2 For each word w ∈ {1, ...,N} :

Draw topic assignment zdn from Multinomial(θd )
Draw word wdn from Multinomial(βzdn )
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Latent Dirichlet Allocation: notations

There are some notations used in LDA model:

1 wdn is the nth word in dth document. Each word is an element in the
fixed vocabulary of V terms.

2 βk is a V dimensional vector, on a V − 1 simplex. The w th entry in
topic k is βkw

3 θd is the associated topic proportions of dth document. It is a point
on the K − 1 simplex.

4 zdn indexes the topic from which wdn is drawn. It is assumed that
each word in each document is drawn from a single topic.
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LDA: inference

Graphical model representation of LDA. The boxes are plates representing
replicates. The outer plate represents documents, while the inner plate
represents the repeated choice of topics and words within a document.

1

The joint distribution is:

p(θ, z ,w |β,α) = p(θ|α)
∏N

n=1 p(zn|θ)p(wn|zn,β)

1Blei, David M.; Ng, Andrew Y.; Jordan, Michael I (January 2003). Lafferty, John,
ed. ”Latent Dirichlet Allocation”. Journal of Machine Learning Research. 3 (45): pp.
9931022. doi:10.1162/jmlr.2003.3.4-5.993
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LDA: inference

The key inferential problem that we need to solve in order to use LDA is
that of computing the posterior distribution of the hidden variables given a
document:

p(θ, z |w ,α,β) = p(θ,z ,w |β,α)
p(w |α,β)

However, the denominator is computationally intractable.

Variational Inference for GPs October 17, 2017 13 / 68



LDA: inference

One way to approximate the posterior is variational inference. In
mean-field variational inference, the variational distributions of each
variable are in the same family as the complete conditional. We have:

p(zdn = k |θd ,β1:K ,,wdn) ∝ exp{ln θdk + lnβk,wdn
},

p(θd |zd ) = Dirichlet(α +
∑N

n=1 zdn),

p(βk |z,w) = Dirichlet(η +
∑D

d=1

∑N
n=1 z

k
dnwdn)

So, the corresponding variational distributions are:

q(zdn) =Multinomial(φdn), for each update:
φdn ∝ exp{Ψ(γdk ) + Ψ(λk,wdn

)−Ψ(
∑

v λkv )} for n ∈ {1, ...,N}
q(θd ) = Dirichlet(γd ), for each update, γd = α +

∑N
n=1 φdn

q(βk ) = Dirichlet(λk ), for each update,
λk = η +

∑D
d=1

∑N
n=1 φ

k
dnwdn
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LDA: inference

Before updating the topics λ1:K , we need to compute the local variational
parameters for every document. This is particularly wasteful in the
beginning of the algorithm when, before completing the first iteration, we
must analyze every document with randomly initialized topics.
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Stochastic Variational Inference,
by Matt Hoffman, David M. Blei, Chong Wang, John

Paisley

Variational Inference
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Variational Inference

Goal: approximate the posterior distribution of a probabilistic model
by introducing a distribution over the hidden variables, and optimizing
the parameters of that distribution.

Our class of models involves:

Obsevations x = x1:N

Global hidden variables β

Local hidden variables z = z1:N

Fixed parameters α (For simplicity we assume that they only govern
the global hidden variables)
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Global vs. Local Hidden Variables

Global hidden variables β : parameters endowed with a prior p(β)

Local hidden variables z = z1:N : contains the hidden structure that
governs each observation

The difference is determined by conditional dependencies:

p(xn,zn|x -n, z -n,β,α) = p(xn,zn|β,α)

Also, the complete conditional distribution of the hidden variables are in
the exponential family

q(β|x , z ,α) = h(β)exp(ηg (x,z,α)T t(β)-agηg (x,z,α))
q(znj |xn,znj ,β) = h(znj )exp(ηl (xn,znj ,β)T t(znj )-alηl (xn,znj ,β))
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Mean-field Variational Inference

Mean-field variational inference: a variational inference family where
each hidden variable is independent and governed by its own
variational parameter
λ govern the global variables and φn govern the local variables

q(z,β) = q(β|λ)
N∏

n=1

J∏

j=1

q(znj|φnj)

Also, we set q(β|λ) and q(znj|φnj) to be in the same exponential
family as the complete conditional distributions
p(β|x , z)andp(znj|xn, zn-j,β)

q(β|λ) = h(β)expλT t(β)-ag(λ)
q(znj |φnj ) = h(hnj )expφT

nj t(znj )-al(φnj )
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Batch Variational Bayes

L= E[logq(z,β)]-E[logp(x,z,β)]

Coordinate update for λ: λ = Eq[ηg (x,z,α)]

Coordinate update for φ: φnj = Eq[ηl (xn,zn−j ,β)]

Therefore, we can optimize our objective function with an easy
coordinate ascend and in closed form

Variational Inference for GPs October 17, 2017 20 / 68



Batch Variational Bayes Algorithm

1 Initialize λ(0) randomly

2 Repeat

3 for each local variational parameter φnj do

4 Update φnj ,φ
(t)
nj = Eq(t−1) [ηl ,j (xn,zn−j ,β)]

5 End for

6 Update the global variational parameters λ(t) = Eq(t) [ηg (z1:N ,x1:N)]
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Stochastic Variational Inference

Solution: Use a Stcohastic optimization, repeatedly subsample the
data to form noisy estimates of the natural gradient of the ELBO

∇̂λL= Eφ[ηg (x,z,α)] - λ

∇̂φnj
L= Eλ,φn−j

[ηl (xn,zn−j ,β)] - φnj

Some benefits of Natural Gradients:

The natural gradient points in the direction of steepest ascent in the
Riemannian space

Converges faster

It is cheaper to compute
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Stochastic Variational Inference Algorithm

1 Initialize λ(0) randomly

2 Set a step size ρt appropriately

3 Repeat

4 Sample a datapoint xi uniformly from the dataset

5 Update the local variational parameter of the sample as if we were
doing coordinate ascend

φ = Eλ(t−1)[ηg (xN
i ,zN

i )]

6 Update the current estimate of the global variational parameters

λ(t) = λ(t−1)+ρt∇̂λL = (1-ρt)λ(t−1)+ ρt Eφ[ηg (xN
i ,zN

i )]
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A Review Of Stochastic Gradient Variational Bayes

Last lecture instroduced Stochastic Gradient Variational Bayes (SGVB).

In SGVB, the ELBO: L(φ) = Ex∼D [Eq(z;φ)[log p(x , z)− log q(z |x , φ)]] is

optimized via stochastic gradient decent where we estimate ∂L(φ)
∂φ using

monte-carlo samples.

In SGVB our estimator is produced via a 2-step hierarchical sampling
procedure:

We draw a minibatch of data xi (or xi , xj , xk , ...)

We draw a minibatch of samples zi ∼ q(zi |xi , φ)

We estimate ∂L(φ)
∂φ ≈ ∂

∂φ(log p(xi , zi )− log q(zi |xi , φ))

Where we have reparameterized zi = f (xi , ε, φ) with ε ∼ p(ε).

Thus: ∂L(φ)
∂φ ≈ ∂

∂φ(log p(xi , f (xi , ε, φ))− log q(f (xi , ε, φ)|xi , φ))
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Required Properties

Both SVI and SGVB require certain assumptions to hold before they can
be applied

SVI:

There exists an analytic form of ∂L(φ)
∂φ for each model paraemter φ.

The approximate posterior q(z |φ) must be in the same exponential
family as p(z)

SGVB:

The likelihood p(x , z) must be differentiable wrt z .

The approximate posterior q(z |x , φ) must be differentiabe wrt its
parameters φ.

There exists a differentiable reparameterization f (x , ε, φ), ε ∼ p(ε)
such that z = f (x , ε, φ) is distributed as q(z |x , φ).

Variational Inference for GPs October 17, 2017 25 / 68



SVI

Benefits:

Performs natural gradient decent.

Invariant to parameterization.

Exponential family provides a rich set of both continuous and discrete
data to be modeled.

Allows for scalable inference over large datasets.

Downsides:

Parameters of variational approximation q(z |φ) must be exactly the
exponential family parameters limiting complexity of the relationship
between q(z |φ) and data x .

Analytic Forms of ELBO derivitives are nessesary.

q(z |φ) must be in the same exponential family as p(z).
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SGVB

Benefits:

Weaker Modeling Assumptions can be made.

p(x , z) and q(z |φ) need only be differentiable wrt their parameters.

Complex, nonlinear relationships between data and latent variables
may be learned.

Reparameterization allows for low-variance gradient estimates for all
model parameters.

Allows for scalable inference over large datasets.
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SGVB Continued

Downsides:

Naive natural gradient decent is intractible in nonlinear probablistic
models (although see Dr. Grosse’s recent work for exciting progress
towards approximate NGD for neural network models).

Not invariant to model parameterization so extra care must be taken
to ensure proper results.

Reparameterization limits the type of posterior approximations we can
use to continuous distributions (like gaussian, laplace).

No proof exists showing that reparameterization gradients have lower
varaince than score function estimator.
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Variational Inference for GPs

Sparse Gaussian Process
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Gaussian Processes Review

y = {f (xi ) + ε}n
i=1, X = {xi}n

i=1, xi ∈ Rd

A Gaussian process is a collection of random variables, any finite number
of which have a joint Gaussian distribution. It is completely specified by its
mean and covariance function.

Prior f ∼ N (0,KX,X), [KX,X]i ,j = k(xi , xj )

Joint Prior

[
y
f∗

]
∼ p(y, f∗) = N

(
0,

[
KX,X + σ2I KX,∗

K∗,X K∗,∗

])

Conditional Distribution f∗|X, y,X∗ ∼ N (E[f∗], cov[f∗])

E[f∗] = (KX,X + σ2I)−1y

cov[f∗] = K∗,∗ −K∗,X(KX,X + σ2I)−1KX,∗
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Model Selection

Our kernels are typically parameterized by some hyperparameters θ. For
example, the squared exponential kernel

k(x, z) = exp(−||x−z||22/θ2)

Log Marginal likelihood

log p(y|θ, σ2,X) = −1
2 log |KX,X+σ2I|− 1

2yT
X (KX,X+σ2I)−1yX− N

2 log(2π)

Requires O(n3) time and O(n2) storage.

Variational Inference for GPs October 17, 2017 31 / 68



Modifying the Joint Prior

p(f, f∗) = N
(

0,

[
KX,X KX,∗
K∗,X K∗,∗

])

We want to modify this joint prior to reduce computational requirements.
Assume f∗, f conditionally independent given set of inducing point
locations Z = {zi}m

i=1 and responses u = {ui}m
i=1.

p(f, f∗) =

∫
p(f, f∗,u)du

q(f, f∗) =

∫
p(f∗|u)q(f|u)p(u)du

we make an approximation to the training conditional

p(f|u) ≈ q(f|u)
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Fully Independent Training Conditional (FITC)

We approximate the training conditional with an independent distribution
(diagonal covariance)

p(f|u) = N (KX,ZK−1X,Zu, KX,X −QX,X)

q(f|u) = N (KX,ZK−1X,Zu, diag[KX,X −QX,X])

where QX,X = KX,ZK−1Z,ZKZ,X. This gives

p(f, f∗) ≈ N
(

0,

[
QX,X + diag[KX,X −QX,X] QX,∗

Q∗,X Q*,* + diag[K*,* −Q*,*]

])

from this, the cost of computing our conditional distribution decreases
from O(n3)→ O(m2n) time and from O(n2)→ O(mn) storage.

Variational Inference for GPs October 17, 2017 33 / 68



Variational Inference for GPs

Adapted from a presentation by ”Variational Model Selection for Sparse
Gaussian Process Regression” Christopher. P. Ley (2016) 2

2http://games.cmm.uchile.cl/media/uploads/posts/SGP_presentation.pdf

http://games.cmm.uchile.cl/media/uploads/posts/SGP_presentation.pdf


Variational learning of inducing variables I

Titsias (2009) proposed a variational lower bound to approximate the
true posterior.

The ideal inducing variables should serve as sufficient statistics to the
observation y.

p(f|fm, y) = p(f|fm)

The augmented true posterior p(f, fm|y) factorises as

p(f, fm|y) = p(f|fm)p(fm|y)



Variational learning of inducing variables II

The key is that q(f, fm) must satisfy a factorisation that holds for
optimal inducing variables:

True : p(f, fm|y) = p(f|fm)p(fm|y)

Approximate : q(f, fm) = p(f|fm)φ(fm)



Variational Model Selection for Sparse Gaussian Process Regression

Variational learning of inducing variables III

This gives rise to the variational distribution

q(f , f m) = p(f |f m)φ(f m)

where φ(f m) is an unconstrained variational distribution over
f m

We now can use standard variational Bayesian inference where
we minimise the Kullback-Leibler divergence

KL(q(f , f m)||p(f , f m|y))

Which gives us an equivalent maximum bound on the true log
marginal likelihood:

FV (Xm, φ(f m)) =

∫

f ,f m

q(f , f m) log
p(y |f )p(f |f m)

q(f , f )
df df m



Variational Model Selection for Sparse Gaussian Process Regression

Computation of the variational bound I

FV (Xm, φ(f m)) =

∫

f ,f m

p(f |f m)φ(f m) log
p(y |f )p(f |f m)

p(f |f m)φ(f m)
df df m

=

∫

f m

φ(f m)

{∫

f
p(f |f m) log p(y |f )df + log

p(f m)

φ(f m)

}
df m

=

∫

f m

φ(f m)

{
logG (f m, y) + log

p(f m)

φ(f m)

}
df m

logG (f m, y) = log[N (y |E [f |f m], σ2
noise I )]− 1

2σ2
noise

Tr [Cov(f |f m)]

E [f |f m] = KnmK
−1
mmf m

Cov[f |f m] = Knn − KnmK
−1
mmKmn



Bias-Variance Decomposition

∫

f
p(f|fm)logp(y|f)df =

bias︷ ︸︸ ︷
log [N(y|E [f|fm], σ2noise I )]− 1

2σ2noise

Tr [Cov(f|fm)]

︸ ︷︷ ︸
variance

Recall that the bias-variance decomposition in L2 loss:

Et∼p(t|x)[(y − t)2] = (y − Et∼p(t|x)[t])2
︸ ︷︷ ︸

bias

+Var [t|x ]︸ ︷︷ ︸
variance



Variational Model Selection for Sparse Gaussian Process Regression

Computation of the variational bound II

Merge the logs

FV (Xm, φ(f m)) =

∫

f m

φ(f m)

{
log

G (f m, y)p(f m)

φ(f m)

}
df m

Reverse Jensens’s inequality to maximize wrt φ(f m):

FV (Xm) = log

∫

f m

G (f m, y)p(f m)df m

= log

∫

f m

N (y |αm, σ
2
noise I )p(f m)df m −

1

2σ2
noise

Tr [Cov(f |f m)]

= log [N (y |0, σ2
noise I + KnmK

−1
mmKmn)]− 1

2σ2
noise

Tr [Cov(f |f m)]

where Cov[f |f m] = Knn − KnmK
−1
mmKmn



Variational Model Selection for Sparse Gaussian Process Regression

Variational bound versus PP log likelihood

The traditional projected process (PP or DTC) log likelihood
is

FP = log
[
N(y|0, σ2I + KnmK

−1
mmKmn)

]

What we obtained is

FV = log
[
N(y|0, σ2I + KnmK

−1
mmKmn)

]
− 1

2σ2
Tr [Knn − KnmK

−1
mmKmn]

We got this extra trace term (the total variance of p(f|fm))



Variational Model Selection for Sparse Gaussian Process Regression

Variational bound for model selection

Learning inducing inputs Xm and (σ2,θ) using continuous
optimization

Maximize the bound wrt to (Xm, σ
2,θ)

FV = log
[
N(y|0, σ2I + KnmK

−1
mmKmn)

]
− 1

2σ2
Tr [Knn − KnmK

−1
mmKmn]

The first term encourages fitting the data y

The second trace term says to minimize the total variance of
p(f|fm)

The trace Tr [Knn − KnmK
−1
mmKmn] can stand on its own as an

objective function for sparse GP learning



Variational bound for model selection

When the approximation is the same as the full covariance matrix, i.e.

Knn = KnmK−1mmKmn

Tr [Knn − KnmK−1mmKmn] = 0

p(f|fm) becomes a delta function

We can reproduce the exact GP prediction



Variational Model Selection for Sparse Gaussian Process Regression

Illustrative comparison on Ed Snelson’s toy data

0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

We compare the traditional PP/DTC log likelihood

FP = log
[
N(y|0, σ2I + KnmK

−1
mmKmn)

]

and the bound

FV = log
[
N(y|0, σ2I + KnmK

−1
mmKmn)

]
− 1

2σ2
Tr [Knn − KnmK

−1
mmKmn]

We will jointly maximize over (Xm, σ
2,θ)



Variational Model Selection for Sparse Gaussian Process Regression

Illustrative comparison

200 training points, red line is the full GP, blue line the sparse GP.
We used 8, 10 and 15 inducing points

8 10 15

VAR

PP



Variational bound compared to PP likelihood

The variational method (VFE) converges to the full GP model as we
increase the number of inducing variables. But PP would not.

VFE tends to find smoother distribution than the fill GP when the
inducing vairaibles are not enough.

PP tends to interpolate the training examples.



Variational Inference for GPs

FITC and VFE Comparison
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Overview of the two methods

Negative Log Marginal Likelihood:

Data fit: Penalizes data outside the covariance ellipse Qff + G
Complexity penalty: Characterizes the volume of possible datasets
compatible with the data fit term. (Occam’s Razor)
Trace term: Ensure that objective function is a true lower bound to
marginal likelihood of the full GP
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Overview

Points of comparison:

1 Noise Variance

2 Number of Inducing Inputs

3 True GP Posterior

4 Optimas
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Noise Variance

FITC (left) underestimates the noise variance while VFE (right)
overestimates it

In full GP, we assume homoscedastic (input independent) noise with
parameter σ2n

FITC uses the diagonal term diag(Kff − Qff ) in GFITC as
heteroscedastic (input dependent) noise

The trace and data fit terms in VFE can be reduced by increasing σ2n
causing a bias towards overestimation of the noise variance
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Number of Inducing Inputs

VFE improves with additional inducing inputs while FITC may ignore
them

Variational Inference for GPs October 17, 2017 44 / 68



Number of Inducing Inputs

FITC avoids the penalty of added inducing inputs by clumping them

This also means FITC doesn’t recover the full GP even when given
enough resources
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Local Optima

FITC relies on local optima

The minimum found by FITC through clumping still exists in the
optimization surface of many inducing points

Optimizing FITC is easier than VFE

Optimizing VFE function includes initializing the inducing points with
k-means and initially fixing the hyperparameters

VFE recognizes a good solution when we initialize it with the FITC
solution
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Summary

FITC Behaviour

Over-estimation of marginal likelihood
Severe under-estimation of noise variance
Wasting modelling resources
Not recovering true posterior

VFE Behaviour

True bound to the marginal likelihood of full GP
Behaves predictably
Improves with extra resources
Recovers true posterior when possible

FITC remains easier to optimise and gives a good local optima

The VFE objective function is recommended since its optimization
difficulties can be mitigated by careful initialization, random starts
and FITC initialization

In practice, it ends up depending on the dataset
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Variational Inference for GPs

SVI for GPs
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Are sparse GPs enough?

Standard GPs require O(n3) time complexity and O(n2) storage.

Sparse GPs cut this down to O(nm2) time complexity and O(nm)
storage.

But we have huge datasets where n is on the order of millions, or
billions!

How can we hope to fit (even sparse) GPs to datasets of this magnitude?
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Stochastic variational inference!
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The GP Variational Bound

Titsias, 2009. showed that

log p(y|X) = log

∫
p(y|u)p(u)du (1)

≥ log

∫
exp(L1)p(u)du := L2 (2)

Where L1 := Ep(f|u)[log p(y|f)]. Remember:

f - Function evaluated at X
y - Noisy observation of f
u - Value of function evaluated at inducing points (Z)

We can compute this analytically (as shown before). Posterior can be
viewed as ”collapsed” over inducing points

We need to be explicit about inducing points to do SVI
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Requirements for SVI

Marginalisation of u introduces dependencies in the observations. We need
to adjust our VIGP regression model to allow us to use SVI...
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From a collapsed posterior to global latent variables

We instead treat the inducing points as global latent variables, with
variational distribution q(u)

We then get a new bound which we can use for SVI.

log p(y|X) ≥ Eq(u)[L1 + log p(u)− log q(u)] := L3 (3)

(Remember, L1 := Ep(f|u)[log p(y|f)])

The optimal q(u) is Gaussian, which leads to,

L3 =
n∑

i=1

{
logN (yi |µ̂, β−1) + · · ·

}
− KL(q(u)||p(u)) (4)

Omitting some terms for brevity (see paper).

We can write this as a sum over data points allowing SVI!
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Inference with this new bound

We perform SVI using natural gradient updates

Exponential family leads to a nice form of the updates

See the paper for the derived update rules

Training updates are now O(m3)!

Can also use non-Gaussian likelihoods because of the L3 factorisation.
This normally requires approximations.
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Experiments I

Each pane shows the posterior of the GP updated per batch. The
variational distribution q(u) is shown by the error bars.
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Experiments II

Posterior variance of apartment price by postal region.
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Summary

We cannot do SVI on the collapsed VI bound.

But we can refactorize it.

SVI lets us handle big data and can attain the same optimum
parameters.
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PAC-Bayes

PAC-Bayes
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Hoeffding’s Inequality

How can you infer the probability of orange balls?

Sampling!!!

Assume the real orange probability is µ, the number of balls sampled
is N, the sampling orange probability is ν.
How accurate is your estimation by sampling?

3

3Thanks to Hsuan-Tien Lin in National Taiwan University for his example.
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Hoeffding’s Inequality

Hoeffding’s Inequality

p [|ν − µ| ≥ ε] ≤ 2 exp(−2ε2N) (5)

The statement ν = µ is probably approximately correct (PAC)

When the number of samples is big, your estimation can be very
accurate. Therefore,

you can LEARN from training set! bigger, better!
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Hoeffding’s Inequality

Moving on, supposing we have K hypothesis, whose generalization
errors are {ei}K

i=1, whose empirical errors are {êi}K
i=1, the probability

for discrepency ε

p(∃i , |êi − ei | ≥ ε) ≤
∑

i

P(|êi − ei | ≥ ε) ≤ 2K exp(−ε2N) (6)

Equivently, we have

log p(∃i , |êi − ei | ≥
√

log(2K )− log(δ)

N
) ≤ δ (7)
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Gibbs Classifier Bayes Classifier

Suppose we’re doing a binary classification task. Let x ∈ X and
t ∈ {−1, 1}.
The model is composed of a latent function x→ y(x), and a
classification model P(t|y).

From the Bayesian viewpoint, the latent function could be
parametrized as y(x|w), where w ∼ Q(w)
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Gibbs Classifier Bayes Classifier

Gibbs Classifier predicts the output by first sampling w ∼ Q(w),
then returning

t∗ = sgny(x∗|w) (8)

Bayes classifier predicts the output by integrating the distribution of
w, namely

t∗ = sgnEw∼Q [y(x∗|w)] (9)

Bayes voting classifier predicts the output by integrating the
distribution of w and votes, namely

t∗ = sgnEw∼Q [sgny(x∗|w)] (10)
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PAC-Bayesian theorem (McAllester, 1999)

4 For any data distribution over X × {−1,+1} and an arbitrary posterior
distribution Q(w), we have that the following bound holds, where the
probability is over random i.i.d. samples of size n
S = {(xS

i , t
S
i )|i = 1, · · · , n} drawn from the true data distribution:

p [gen(Q) > emp(S ,Q) + f (KL[Q||P], n, δ, emp(S ,Q)] ≤ δ (11)

4PAC-Bayesian Generalisation Error Bounds for Gaussian Process Classification
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Variational Inference and PAC-Bayesian

Recall variational inference, which training Evidence Lower
Bound(ELBO) to optimize the variational posterior.

ELBO = EQ(z|x)[logp(x|z)]− KL[Q(z |x)||P(z)] (12)

With the reconstruction error, empirical loss tends to be small.

With the regularization term, KL divergence cannot be very big.
⇓

VI tends to have good generalization.
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Gaussian Process Classification

Given dataset S = {(xi , ti )}N
i=1, a Gaussian Process models the

dependency,
p(y) ∼ N (0,K)

p(t|y) =
∏

i

p(ti |yi )
(13)

According to Bayes formula, the true posterior is as

p(y|S) ∝ p(t|y)p(y) (14)

Different with GP regression, classification posterior is intractable,
which promotes using variational posterior q(y) (Laplace
approximation, for example).

q(y) = N (K−1α,Σ) (15)
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Gaussian Process Classification

Given q (y |S ), predication for testing data x?? Assume k = k (x?,X),
k? = k (x?, x?).

p (y?, y |S ) = p (y? |y ) q (y|S)

p (y? |y ) = N
(

kT K−1y, k? − kT K−1k
) (16)

Using conditional Gaussian distribution, we have the predicative
distribution

q (y? |y, S ) = N
(

kTα, k? − kT
(
K−1 −K−1ΣK−1

)
k
)

(17)

KL divergence between q (y) and p(y) gives PAC bound for GP binary
classification.
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What can PAC do?

Model Selection. (Not accurate, only as a reference)
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