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Motivation

Two classes of optimization procedures used throughout ML
(stochastic) gradient descent, with momentum, and maybe
coordinate-wise rescaling (e.g. Adam)

Can take many iterations to converge, especially if the problem is
ill-conditioned

coordinate descent (e.g. EM)

Requires full-batch updates, which are expensive for large datasets

Natural gradient is an elegant solution to both problems.

How it fits in with this course:

This lecture: it’s an elegant and efficient way of doing variational
inference
Later: using probabilistic modeling to make natural gradient practical
for neural nets

Bonus groundbreaking result: natural gradient can be interpreted as
variational inference!
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Motivation

SGD bounces around in high curvature directions and makes slow
progress in low curvature directions. (Note: this cartoon understates
the problem by orders of magnitude!)

This happens because when we train a neural net (or some other ML
model), we are optimizing over a complicated manifold of functions.
Mapping a manifold to a flat coordinate system distorts distances.

Natural gradient: compute the gradient on the globe, not on the map.
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Motivation: Invariances

Suppose we have the following dataset for linear regression.

x1 x2 t
114.8 0.00323 5.1
338.1 0.00183 3.2

98.8 0.00279 4.1
...

...
...

This can happen since the inputs have arbitrary units.

Which weight, w1 or w2, will receive a larger gradient descent update?

Which one do you want to receive a larger update?

Note: the figure vastly understates the narrowness of the ravine!
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Motivation: Invariances

Or maybe x1 and x2 correspond to years:

x1 x2 t
2003 2005 3.3
2001 2008 4.8
1998 2003 2.9

...
...

...
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Motivation: Invariances

Consider minimizing a function h(x), where x is measured in feet.

Gradient descent update:

x ← x − αdh
dx

But dh/dx has units 1/feet. So we’re adding feet and 1/feet, which
is nonsense. This is why gradient descent has problems with badly
scaled data.

Natural gradient is a dimensionally correct optimization algorithm. In
fact, the updates are equivalent (to first order) in any coordinate
system!
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Steepest Descent

(Rosenbrock example)

Gradient defines a linear approximation to a function:

h(x + ∆x) ≈ h(x) +∇h(x)>∆x

We don’t trust this approximation globally. Steepest descent tries to
prevent the update from moving too far, in terms of some
dissimilarity measure D:

xk+1 ← arg min
x

{
∇h(xk)>(x− xk) + λD(x, xk)

}
Gradient descent can be seen as steepest descent with
D(x, x′) = 1

2‖x− x′‖2.

Not a very interesting D, since it depends on the coordinate system.
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Steepest Descent

A more interesting class of dissimilarity measures is Mahalanobis
metrics:

D(x, x′) = (x− x′)>A(x− x′)

Steepest descent update:

x← x− λ−1A−1∇h(x)

Roger Grosse CSC2541 Lecture 5 Natural Gradient 8 / 12



Steepest Descent

It’s hard to compute the steepest descent update for an arbitrary D.
But we can approximate it with a Mahalanobis metric by taking the
second-order Taylor approximation.

D(x, x′) ≈ 1

2
(x− x′)

∂2D

∂x2
(x− x′)

One interesting example: simulating gradient descent on a different
space.

(Rosenbrock example)

Later in this course, we’ll use this insight to train neural nets much
faster.

Roger Grosse CSC2541 Lecture 5 Natural Gradient 9 / 12



Fisher Metric

If we’re fitting a probabilistic model, the optimization variables
parameterize a probability distribution.

The obvious dissimilarity measure is KL divergence:

D(θ,θ′) = DKL(pθ‖pθ′)

The second-order Taylor approximation to KL divergence is the Fisher
information matrix:

∂2DKL

∂θ2
= F = Cov

x∼pθ
(∇θ log pθ(x))
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Fisher Metric

Fisher metric for two different parameterizations of a Gaussian:
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Fisher Metric

KL divergence is an intrinsic dissimilarity measure on distributions: it
doesn’t care how the distributions are parameterized.

Therefore, steepest descent in the Fisher metric (which approximates
KL divergence) is invariant to parameterization, to the first order.

This is why it’s called natural gradient.

Update rule:
θ ← θ − αF−1∇θh

This can converge much faster than ordinary gradient descent.

(example)

Hoffman et al. found that if you’re doing variational inference on
conjugate exponential families, the variational inference updates are
surprisingly elegant — even nicer than ordinary gradient descent!
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