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Motivation

@ Two classes of optimization procedures used throughout ML

o (stochastic) gradient descent, with momentum, and maybe
coordinate-wise rescaling (e.g. Adam)

o Can take many iterations to converge, especially if the problem is
ill-conditioned

o coordinate descent (e.g. EM)

@ Requires full-batch updates, which are expensive for large datasets

@ Natural gradient is an elegant solution to both problems.
@ How it fits in with this course:
e This lecture: it's an elegant and efficient way of doing variational
inference

o Later: using probabilistic modeling to make natural gradient practical
for neural nets

@ Bonus groundbreaking result: natural gradient can be interpreted as
variational inference!
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Motivation

@ SGD bounces around in high curvature directions and makes slow
progress in low curvature directions. (Note: this cartoon understates
the problem by orders of magnitude!)

/W?

@ This happens because when we train a neural net (or some other ML
model), we are optimizing over a complicated manifold of functions.
Mapping a manifold to a flat coordinate system distorts distances.

o Natural gradient: compute the gradient on the globe, not on the map.
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Motivation: Invariances

@ Suppose we have the following dataset for linear regression.
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X1 Xo ‘ t
114.8 0.00323 | 5.1
338.1 0.00183 | 3.2

98.8 0.00279 | 4.1

—— S

W,

@ This can happen since the inputs have arbitrary units.

@ Which weight, wy or wy, will receive a larger gradient descent update?
@ Which one do you want to receive a larger update?

@ Note: the figure vastly understates the narrowness of the ravine!
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Motivation: Invariances

@ Or maybe x; and x, correspond to years:

X1 X2 ‘ t
2003 2005 | 3.3
2001 2008 | 4.8
1998 2003 | 2.9
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Motivation: Invariances

o Consider minimizing a function h(x), where x is measured in feet.
o Gradient descent update:

X4 X—a—
dx

@ But dh/dx has units 1/feet. So we're adding feet and 1/feet, which
is nonsense. This is why gradient descent has problems with badly
scaled data.

o Natural gradient is a dimensionally correct optimization algorithm. In
fact, the updates are equivalent (to first order) in any coordinate
system!
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|
Steepest Descent

@ (Rosenbrock example)

@ Gradient defines a linear approximation to a function:
h(x + Ax) ~ h(x) + Vh(x) " Ax

@ We don't trust this approximation globally. Steepest descent tries to
prevent the update from moving too far, in terms of some
dissimilarity measure D:

x*1 « argmin {Vh(xk)T(x —x¥) + AD(x, xk)}
X
o Gradient descent can be seen as steepest descent with

D(x,x) = 3[x — x|

o Not a very interesting D, since it depends on the coordinate system.
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Steepest Descent

@ A more interesting class of dissimilarity measures is Mahalanobis

metrics:
D(x,x') = (x —x) TA(x — X)
||Az|| < € [|J(z)Az|| <€
Under normal “L2" distance, equidistent Alternate notions of distance can make
points form a circle and the gradient is equidistent points form an elllipse and
the steepest direction. shift the steepest direction.

@ Steepest descent update:

X < x — A LATIVA(x)
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Steepest Descent

@ It's hard to compute the steepest descent update for an arbitrary D.
But we can approximate it with a Mahalanobis metric by taking the
second-order Taylor approximation.

1 9%D

D(x,x') ~ =(x — XI)W(X —x)

N

@ One interesting example: simulating gradient descent on a different
space.

@ (Rosenbrock example)

@ Later in this course, we'll use this insight to train neural nets much
faster.
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Fisher Metric

o If we're fitting a probabilistic model, the optimization variables
parameterize a probability distribution.

@ The obvious dissimilarity measure is KL divergence:
D(0,6") = Dxu(pollpe’)

@ The second-order Taylor approximation to KL divergence is the Fisher
information matrix:
9*Dk1,
06°

= F = Cov(Vplog pp(x))
X~ pg
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Fisher Metric

@ Fisher metric for two different parameterizations of a Gaussian:

mean and std dev information form

Ao

S\

§
S Taratatytyiy’
NN

‘9‘%
s s st e v e e s

i h

n H
p(z) o exp (— (e = u)z) p(z) o exp (hz - ;:cg)

20

Roger Grosse CSC2541 Lecture 5 Natural Gradient 11 /12



N
Fisher Metric

@ KL divergence is an intrinsic dissimilarity measure on distributions: it
doesn’t care how the distributions are parameterized.

@ Therefore, steepest descent in the Fisher metric (which approximates
KL divergence) is invariant to parameterization, to the first order.

e This is why it's called natural gradient.
o Update rule:
0 < 6 — aF 'Vgh
@ This can converge much faster than ordinary gradient descent.
o (example)
@ Hoffman et al. found that if you're doing variational inference on

conjugate exponential families, the variational inference updates are
surprisingly elegant — even nicer than ordinary gradient descent!
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