
Variational Inference for Bayesian Neural

Networks

Jesse Bettencourt, Harris Chan, Ricky Chen, Elliot Creager, Wei Cui, Mo-

hammad Firouzi, Arvid Frydenlund, Amanjit Singh Kainth, Xuechen Li,

Jeff Wintersinger, Bowen Xu

October 6, 2017

University of Toronto

1



Overview

Variational Autoencoders
Kingma and Welling, 2014. Auto-encoding variational Bayes.

Variational Inference for BNNs
Origins of VI: MDL Interpretation
Hinton and van Camp, 1993. Keeping the neural networks simple by minimizing the description

length of the weights.

Practical VI for Neural Networks
Graves, 2011. Practical variational inference for neural networks.

Weight Uncertainty in Neural Networks
Blundell et al., 2015. Weight uncertainty in neural networks.

The Local Reparameterization Trick
Kingma, Salimans, and Welling, 2015. Variational dropout and the local reparameterization trick.

Sparsification
Louizos et al., 2017. Bayesian compression for deep learning.

2



Variational Autoencoders (VAE)



From Autoencoders to Variational Autoencoders

• Autoencoders (AE)

• Neural network which reconstructs its own inputs, x

• Learns useful latent representation, z

• Regularized by bottleneck layer – compresses latent

representation

• Encoder f (x)→ z and decoder g(z)→ x

• Compresses point in input space to point in latent space

• Variational autoencoders (VAE)

• Regularized by forcing z to be close to some given distribution

• z ∼ N (µ = 0, σ2 = 1), with diagonal covariance

• Learn distribution over latent space

• Compresses point in input space to distribution in latent space

3



Implementing a VAE

Three implementation differences between a VAE and an AE

1. Our encoder network parameterizes a probability distribution

• Normal distribution is parameterized by its means µ and

variances σ2

• Encoder f (x)→ µ, σ2

• Decoder g(z)→ x , where z ∼ N (µ, σ2)

2. Need to sample z

• Problem: Can not backpropagate through sampling z

• Solution: reparameterization trick

• z = µ+σ ∗ ε, where ε is a noise input variable and ε ∼ N (0, 1)

3. We need to add a new term to the cost function

• Reconstruction error (log-likelihood)

• KL divergence between distribution of z and normal

distribution

• KL term acts as regularizer on z

4



Autoencoders

x1

x2

x3

x4

z1

z2

z3

x1

x2

x3

x4

Encoder Decoder

Figure 1: Inputs are shown in blue and the latent representation is

shown in red.

5



Variational Autoencoders

x1

x2

x3

x4

µ1

µ2

σ21

σ22

ε1

ε2

z1

z2

x1

x2

x3

x4

Encoder Decoder

Figure 2: Inputs, x , are shown in blue. The latent representation, z , is

shown in red. The parameters, µ and σ2, of the normal distribution are

shown in yellow. They are combined with the noise input, ε, by

z = µ+ σ ∗ ε, shown in dashed lines. 6



Paper Results

(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
pθ(x|z) with the learned parameters θ.

(a) 2-D latent space (b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

Figure 5: Random samples from learned generative models of MNIST for different dimensionalities
of latent space.

B Solution of −DKL(qφ(z)||pθ(z)), Gaussian case

The variational lower bound (the objective to be maximized) contains a KL term that can often be
integrated analytically. Here we give the solution when both the prior pθ(z) = N (0, I) and the
posterior approximation qφ(z|x(i)) are Gaussian. Let J be the dimensionality of z. Let µ and σ
denote the variational mean and s.d. evaluated at datapoint i, and let µj and σj simply denote the
j-th element of these vectors. Then:∫

qθ(z) log p(z) dz =

∫
N (z;µ,σ2) logN (z;0, I) dz

= −J
2
log(2π)− 1

2

J∑
j=1

(µ2
j + σ2

j )

10

Figure 3: Sampled 2D latent space of MNIST.

7



The big picture of VAEs

• Goal: maximize pθ(x) =
∫

pθ(x |z)p(z)dz
• Generative model intuition: if our model has high likelihood of

reproducing the data it has seen, it also has high probability of

producing samples similar to x , and low probability of

producing dissimilar samples

• How to proceed? Simple: choose pθ(x |z) st it’s continuous

and easy to compute—then we can optimize via SGD

• Examples from ”Tutorial on Variational Autoencoders”

(Doersch 2016), arXiv:1606.05908

8



Defining a latent space

• How do we define what information the latent z carries?

• Naively, for MNIST, we might say one dimension conveys digit
identity, another conveys stroke width, another stroke angle

• But we’d rather have the network learn this

• VAE solution: say there’s no simple interpretation of z

• Instead, draw z from N (0, I ), then map through a

parameterized and sufficiently expressive function

• Let pθ(x |z) , N (x ;µθ(z),Σθ(z)), with µθ(·),Σθ(·) as

deterministic neural nets.

• Now tune the parameters θ in order to maximize pθ(x).

9



Estimating pθ(x) is hard

• To optimize pθ(x) via SGD we will need to compute it.

• We could do Monte Carlo estimate of pθ(x) with z ∼ N (0, I ),

and pθ(x) ≈ 1
n

∑
i pθ(x |zi )

• But ... in high dimensions, we likely need extremely large n

• Here, (a) is the original, (b) is a bad sample from model, and
(c) is a good sample from model
• Since pθ(x |z) = N (x ;µθ(z),Σθ(z)) and with Σθ(z) , σ2I , we

have log pθ(x) ∝ − ||µθ(z)−x||22
σ2

• xb is subjectively “bad” but has distance relatively close to the

original: ||xb − xa||22 = 0.0387

• xc is subjectively “good” (just xa shifted down & right by

half-pixel), but scores poorly since ||xc − xa||22 = 0.2693 10



Sampling z values efficiently estimate pθ(x)

• Conclusion: to reject bad samples like xb, we must set σ2 to
be extremely small

• But this means that to get samples similar to xa, we’ll need to

sample a huge number of z values

• One solution: define better distance metric—but these are

difficult to engineer

• Better solution: sample only z that have non-negligible pθ(z |x)

• For most z sampled from p(z), we have pθ(x |z) ≈ 0, so

contribute almost nothing to pθ(x) estimate

• Idea: define function qφ(z |x) that helps us sample z with

non-negligible contribution to pθ(x)

11



What is Variational Inference?

Posterior inference over z often intractable:

pθ(z |x) =
pθ(x |z)p(z)

pθ(x)
=

pθ(z , x)

pθ(x)
=

pθ(z , x)∫
z pθ(x , z)

Want:

Q – tractable family of distribution

qφ(z |x) ∈ Q similar to pθ(z |x)

Approximate posterior inference using qφ

Idea:

Inference → Optimization L(x ; θ, φ)

12



Measuring Similarity of Distributions

Optimization objective must measure similarity between pθ and qφ.

To capture this we use the Kullback-Leibler divergence:

KL(qφ||pθ) =

∫
z

qφ(z |x) log
qφ(z |x)

pθ(z |x)

= Eq log
qφ(z |x)

pθ(z |x)

Divergence not distance:

KL(qφ||pθ) ≥ 0

KL(qφ||pθ) = 0 ⇐⇒ qφ = pθ

KL(q||pθ) = KL(pθ||qφ) KL is not symmetric!

13



Intuiting KL Divergence

To get a feeling for what KL Divergence is doing:

KL(qφ||pθ) =

∫
z

qφ(z |x) log
qφ(z |x)

pθ(z |x)
= Eqφ log

qφ(z |x)

pθ(z |x)

Consider these three cases:

q is high & p is high

q is high & p is low

q is low

14



Isolating Intractability in KL-Divergence

We can’t minimize the KL-Divergence directly:

KL(qφ||pθ) = Eqφ log
qφ(z |x)

pθ(z |x)

= Eqφ log
qφ(z |x)pθ(x)

pθ(z , x)
(pθ(z |x) = pθ(z,x)

pθ(x)
)

= Eqφ log
qφ(z |x)

pθ(z , x)
+ Eqφ log pθ(x)

= Eqφ log
qφ(z |x)

pθ(z , x)
+ log pθ(x)

15



Isolating Intractability in KL-Divergence

We have isolated the intractable evidence term in KL-Divergence!

KL(qφ||pθ) = (Eqφ log
qφ(z |x)

pθ(z , x)
) + log pθ(x)

= −L(x ; θ, φ) + log pθ(x)

Rearrange terms to express isolated intractable evidence:

log pθ(x) = KL(qφ||pθ) + L(x ; θ, φ)

16



Deriving a Variational Lower Bound

Since KL-Divergence is non-negative:

log pθ(x) = KL(qφ||pθ) + L(x ; θ, φ)

log pθ(x) ≥ L(x ; θ, φ)

where

L(x ; θ, φ) = −Eqφ log
qφ(z |x)

pθ(z , x)

A Variational Lower Bound on the intractable evidence term!

This is also called the Evidence Lower Bound (ELBO).

17



Intuiting Variational Lower Bound

Expand the derived variational lower bound:

L(x ; θ, φ) = −Eqφ [log
qφ(z |x)

pθ(z , x)
]

= Eqφ [log
pθ(x |z)p(z)

qφ(z |x)
]

= Eqφ [log pθ(x |z) + log p(z)− log qφ(z |x)]

= Eqφ [log pθ(x |z) + log
p(z)

qφ(z |x)
]

= Eqφ [log pθ(x |z)]︸ ︷︷ ︸
Reconstruction Likelihood

− KL(qφ(z |x)||p(z))︸ ︷︷ ︸
Divergence from Prior

18



Optimizing the ELBO in VAE

To optimize the ELBO,

L(x ; θ, φ) = Ez∼qφ(z|x)[log pθ(x |z)]︸ ︷︷ ︸
,R(x ;θ,φ)

Reconstruction likelihood

− KL(qφ(z |x)||p(z))︸ ︷︷ ︸
Divergence from prior;

analytic expression by design

,

we need to compute gradients ∇θL and ∇φL.

• ∇θKL(·) and ∇φKL(·) by automatic differentiation

• ∇θR(x ; θ, φ) by auto diff given samples z ∼ qφ(z |x)

• ∇φR(x ; θ, φ) by reparameterization trick or other gradient

estimator

19



Reparameterizing: a computation graph view

With1qφ(z |x) , g(φ, x , ε):

∇φ Ez∼qφ(z|x)[f (z)]

= ∇φ
∫

f (z)qφ(z |x)dz

(rep.tr .)
= ∇φ

∫
f (g(φ, x , ε))p(ε)dε

= Ep(ε)[∇φf (g(φ, x , ε))]

With (rep.tr .) due to

|qφ(z |x)dz | = |pθ(ε)dε|. This

permits a specific alteration to

the computation graph without

introducing bias.

Figure 4: from Kingma’s slides at

NIPS 2015 Workshop on Approx.

Inference

20



Other gradient estimators

Yes, the reparameterization trick makes back-prop work for

estimating gradients like ∇φ Eqφ(z)[fθ(z)], but there are other

options. In general, we want unbiased gradient estimators with low

variance.

• score function estimator (i.e., REINFORCE):
∇φ Ez∼qφ(z)[fθ(z)] = Ez∼qφ(z)[fθ(z)∇φ log qφ(z)]

• unbiased, high variance

• reparameterization trick:
z = g(ε, φ)→ ∇φ Ez∼qφ(z)[fθ(z)] = Eε∼pθ(ε)[∇φfθ(g(ε, φ))]

• unbiased, reasonably low variance

• straight-through estimator: pretend the stochastic node acts
like an identity function on the backward pass

• biased

• etc.

21



Approximating full Bayes

Approximate MAP

• Recast
∫
z(·)dz as an optimization.

• Variational dist’ns qφ(z |x); prior

pθ(z).

log pθ(X ) ≥ L(X ; θ, φ)

= Ez∼qφ(z|x)[log pθ(x |z)]−KL(qφ(z |x)||pθ(z))

• Estimate ∇φ by reparameterizing

qφ(z |x) then back-prop.

• Estimate ∇θ by sampling qφ(z |x)

and pathwise derivative estimator.

Approximate full Bayes

• Recast
∫
θ(·)dθ as an optimization.

• Variational dist’ns qφ(θ), qφ(z |x);

hyperprior pα(θ).

log pα(X ) ≥ L(φ; X )

= Eθ∼qφ(θ)[log pθ(X ) log pα(θ)−log qφ(θ)]

• Estimate ∇φ by reparameterizing

qφ(θ) and qφ(z |x) then back-prop.

22



Variational Inference for BNNs



Variational Inference for BNNs (Originations)

• Originally started with Hinton and Camp work.

• They had information theoretic view to the supervised learning

problem.

• Used minimum description length (MDL) principle to improve

generalization on new data

• Introduced bits-back argument (KL divergence showed

himself here!)

23



Minimum Description Length

• Which model is the best?

• According to MDL principle, A model is best that minimizes
the combined cost of

• Describing the model

• Describing the misfit between the model and the data.

Sender

inputs

NN structure

outputs

NN weights

Receiver

inputs

NN structure

Model(weights) + Misfits

24



Shannon’s Coding Theorem

• Entropy definition: H(X ) =
∑

x P(x)(−logP(x))

• Shannon’s Coding Theorem:

• N i.i.d. random variables each with entropy H(X ) can be

compressed into more than NH(X ) bits with negligible risk of

information loss, as N →∞.

• Conversely, if they are compressed into fewer than NH(X ) bits

it is virtually certain that information will be lost.

• According to this theorem, if a sender and a receiver have

agreed on a distribution P(x), then we can code the x using

− log P(x) bits.

25



Coding the Data Misfits and the Weights

• Coding Misfits
• Assuming data misfits are coming from a Gaussian

distribution: P(dc
j − y c

j ) = t 1√
2πσj

exp(
−(dc

j −y
c
j )

2

2σ2
j

)

• So, description length would be:

− log P(dc
j − y c

j ) = − log t + log
√

2π + log σj +
−(dc

j −y
c
j )

2

2σ2
j

• Coding Weights
• Assuming a weight wi,j is coming from a zero-mean Gaussian

distribution with a fixed variance σ2
w , we can get a similar

description length.

• Total Cost
• By removing constants total cost will become:

C =
∑

j
1

2σ2
j

∑
c((dc

j − y c
j )2) + 1

2σ2
w

∑
i,j w2

i,j

• This is just the classic standard ”weight-decay” method.
26



Adding Noise to Weights

• More complicated problem can be obtained by adding

Gaussian noise to weights.

• Suppose sender and receiver have agreed on a Gaussian prior

P, for a given weight. After learning, the sender has a

Gaussian distribution, Q, for the weight.

P(w) : Normal

Q(w |D) = N(µw , σ
2
w )⇒ w = µw + ε, ε ∼ N(0, σ2w )

• Now, lets send the a noisy weight (model description) that

comes from posterior distribution by ”bits-back” coding

scheme.

27



Bits-back Argument

• Before the beginning choose a very fine precision value t.

• Sender collapses the posterior by using a source of

random bits

• Sender then picks a precise w from Q(w |D) and encode it

using P(w). So, expected cost of sending w is:

C = −
∫

Q(w |D)log(tP(w))dw
• But wait! Suppose sender has sent the misfits too. So, by

having the precise weights and the misfits, the receiver has

whatever is needed to run the learning algorithm

(whatever it was) to obtain the posterior. Thus, he can

recover the random bits used to encode posterior into that

weight. The expected value of the number of random bit used

to collapse posterior is: R = −
∫

Q(w |D)log(tQ(w |D))dw
• Total cost will be: C − R = DKL[P||Q]

28



Data Misfits Cost in the Noisy Weights Case

• In the noisy weights case, for general feedforward neural

networks, it’s hard to calculate the cost of data misfits.

• We needed to compute expected value of (dj − yj)
2. It could

be written as follows: E[(dj − yj)
2] = (dj − µyj )2 + Vyj

• for a feedforward neural network hidden layer without

non-linearities, assuming: mean[xh] = µxh , var [xh] =

Vxh ,mean[whj ] = µwhj
, var [whj ] = Vwhj

, yj =
∑

h whj xh

• mean and variance of yj could be computed as follows:

µyj =
∑

h µwhj
µxh ,Vyj =

∑
h µ

2
whj

Vxh + µ2xh + VxhVwhj

• Then we can do backpropagation on E =
∑

j E[(dj − yj)
2] to

obtain mean and variance updates.

xh yjwhj

29



Hyper-priors, Other Priors

• Hyper-priors
• So far, we have assumed the prior that is used for coding the

weights is a single Gaussian.

• In a Bayesian approach we set some hyper-parameters for the

parameters of the coding-prior. This would take into account

the cost of communicating coding-prior given hyper-priors. In

practice, we just ignore the cost of communicating the two

parameters of the coding-prior. This is in some sense similar to

type 2 maximum likelihood (marginalizing out the parameters):

arg maxα P(y |x , α) =
∫

P(y |x ,w)P(w |α)dw

• More flexible prior
• Gaussian prior is too limited to model many distributions on

weights in a feedforward neural network. Mixture of Gaussians

could be a good substitute. Why?

• Can model different structures.

• Could be useful when we want different coding-priors in

different subsets. 30



Practical VI for Neural Networks

Graves 2011

• Stochastic Variational Inference for Neural Networks

• Minimum description length (mdl)

• Approximate inference as Compression

• Optimisation

• Bayesian Formulation (vi) vs Coding Theory (mdl)

• Predictive Accuracy

• Generalization

• Model selection

• Occam’s Razor in Minimum message length (mml)

• Regularisation

31



Bayesian Formulation

• Variational free energy

F(α,β;D) =

〈
log

[
qβ(w|D)

p(D|w)pα(w)

]〉
w∼qβ(w|D)

LN(w,D) = −log p(D|w)

• Evidence lower bound (elbo)

L(θ,φ; x) = Eqφ(z|x)
[
log pθ(x|z)

]
− DKL(qφ(z|x)‖pθ(z))

• Equivalent formulations

L(θ,φ; x) = −F(θ,φ; x)

32



Minimum description length (mdl)

• Transmission cost

F(α,β;D) = 〈LN(w,D)〉w∼qβ(w) +DKL(qβ(w)‖pα(w))

LE (β,D) = 〈LN(w,D)〉w∼qβ(w)

LC (α,β) = DKL(qβ(w)‖pα(w))

F(α,β;D) = LE (β,D) + LC (α,β)

• mdl principle for learning

L(D) = L(θ) + L(D|θ)

= −log(p(θ|H)ε
|θ|
θ )︸ ︷︷ ︸

Complexity cost

−log(p(D|θ,H)ε
|D|
D )︸ ︷︷ ︸

Error cost
33



Bits-back coding

• Expected code length

Eq(θ)[L(D)] = Eq(θ)[L(θ)] + Eq(θ)[L(D|θ)]

• Expected bits-back coding length

Lq(θ)(D) = Eq(θ)[L(D)]−H[q(θ)]

=
〈
log
[ q(θ)

p(D|θ,H)p(θ|H)

]〉
θ∼q(θ)

= DKL(q(θ)‖p(θ|D,H))− log (p(D|H))

Loptimal(D) = −log (p(D|H))

• Optimisation = Compression
34



Mean field approximation

• q(β) =
W∏
i=1

qi (βi ) =⇒ LC (α,β) =
W∑
i
DKL(qi (βi )|p(α))

• sgd affected by choice of posterior q(β) and prior p(α)

• Delta Posterior

• LC (α,β) = −log (p(w|α)) + C

• Uniform prior =⇒ mle

• Laplace prior =⇒ L1 regularisation

• Gaussian prior =⇒ L2 regularisation

• Diagonal Gaussian Posterior

• Uniform prior =⇒ weight noise

• Gaussian prior =⇒ adaptive weight noise

35



Variational Regularisation

Figure 5: Preventing overfitting

36



Model Selection and Pruning

• Pruning

• high q(w|β) =⇒ low LN(w,D) and pruning wk ⇔ wk = 0

• Remove w if q(w = 0|β) is high

• exp(− µ2
i

2σ2
i
) ≥ γ =⇒ |µi

σi
| ≤ λ =

√
−2log2

• Bayes Factor

p(H1|D)

p(H2|D)
=

p(H1)

p(H2)

p(D|H1)

p(D|H2)

• Occam’s factor and the prior

• mml principle : Shortest overall message more probable

• Uncertainty aids compression and prevents overfitting
37



Model Generalisation

Figure 6: Improving generalisation

38



Weight Uncertainty in Neural Networks

Weight Uncertainty in Neural Networks

by Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and

Daan Wierstra

39



Problem Focused in the Work

• Utilize re-parametrization trick for limited amount of

parameters introduced through variational inference

• Formulate objective function to relax restrictions on prior and

variational posterior for requiring closed-form expression;

allowing more prior/variational posterior combinations

• Develop optimization algorithm for obtaining unbiased

gradient estimates, with small variances in gradient signals

40



Recap of Variational Inference

• Let P(w)|D) denote the actual posterior distribution on

weights provided with prior and data; Let q(w)|θ) denote

”variational posterior”: the distribution used to approximate

the actual posterior

• The essence of Variational Inference is to use Kullback-Leibler

divergence as the metric to obtain quality variational posterior

41



Mathematical Formulation for Optimization Problem

• Optimization on variational posterior parameters is

minimization on KL divergence written as following:

θ∗ = argminθKL[q(w|θ)||P(w|D)] (1)

= argminθ

∫
q(w|θ) log

q(w|θ)

P(wP(D|w))
(2)

= argminθKL[q(w|θ)||P(w)]− Eq(w|θ)[log P(D|w)] (3)

• The paper proposes gradient descent based optimization on

above expression through the methods shown in following

slides, without need for computing closed formed KL terms.

• This relaxes restriction on prior and posterior forms of

selection.

42



Defining the Objective Function for Optimization

• With optimization addressing minimizing KL divergence as

defined previously, would like to reformulate it into a convenient

choice of objective function that’s easy to optimize

• Recap the optimization as parameters minimization on the KL

divergence between variational posterior and actual posterior as

our cost function:

θ∗ = argminθ

∫
q(w|θ) log

q(w|θ)

P(w)P(D|w)
dw (4)

• Define the objective function f ((w), θ) as the component being

taken expectation of:

f (w, θ) = log q(w|θ)− log P(w)P(D|w) (5)

• With substituting in this cost function notation, the KL

divergence minimization problem becomes:

θ∗ = argminθEq(w|θ)f (w, θ) (6)

43



Benefits for the Objective Function Choice

• With the objective function defined previously, a Monte Carlo

estimation is as following:

f (w, θ) ≈
n∑

i=1

log q(w(i)|θ)− log P(w(i))− log P(D|w(i)) (7)

With weights samples w(i) drawn according to our variational

posterior
• This formulation of objective function provides two computational

benefits:

1. Every term depends upon w(i) drawn from variational posterior, thus

utilizing a variance reduction technique common random numbers

(Owen, 2013) for the approximation.

2. Note that unlike original Variational Inference formulations

(maximizing ELBO):

ELBO = Ew q(w |θ)[log pθ(x |z)]− KL(q(w |θ)||p(z))︸ ︷︷ ︸
complexity cost of the model

analytically computed for closed form term

(8)

This objective function doesn’t collect terms for getting this KL term,

and thus not requiring closed form solution to be computed. Thus this

allows richer prior/posterior combinations.

44



Optimization by Gradient Descent

• With objective function defined, learning focuses on minimizing

objective function (thus the KL-divergence for high quality

variational posterior) by learning variational posterior parameters

(to be defined later):

∂

∂θ
Eq(w|θ)[f (w|θ)] (9)

• It is attempting to directly use Monte Carlo estimates sampling

from variational posterior, given the expectation form.

• However by implementing a reparametrization trick, the gradient

signals could be obtained through standard back-propagation;

while reducing the gradient signal variance (as introduced in one

of the gradient estimators in presentation Part I).

• To illustrate the reparametrization, a mathematical proposition is

needed first.

45



An Important Mathematical Proposition

• A proposition is introduced to utilize the above

reparametrization in estimation of gradient expectation

• Proposition 1. Let ε be a random variable having a

probability density given by q(ε) and let w = t(θ, ε) where

t(θ, ε) is a deterministic function. Suppose further that the

marginal probability density of w, q(w|θ), is such that

q(ε)dε = q(w|θ)dw. Then for a function f with derivatives in

w:

∂

∂θ
Eqw|θ[f (w|θ)] = Eq(ε)[

∂f (w, θ)

∂w

∂w

∂θ
+
∂f (w, θ)

∂θ
] (10)

46



Reparametrization Trick on Variational Posterior

• Need to define parameters θ for variational posterior q(w|θ)

• Desire to be both easy for gradient expectation computation, and

efficient in amount of parameters introduced

• With assuming Gaussian variational posterior, the paper proposes

the following reparametrization trick:

Start by sampling a unit Gaussian vector, denoted by ε Define

variational posterior parameters ”θ” to be: θ = (µ, ρ) denoting

element-wise mean and variance

The Gaussian variational posterior is then defined as:

w = µ+ ρε (11)

• Note: to ensure the variance is always positive during training, the

following parameterization is actually use to denote the variance:

variance: log(1 + exp(ρ))

Thus, the final reparametrization for variational posterior is:

w = µ+ log(1 + exp(ρ))ε (12)

47



Optimize Network by Using Unbiased Monte Carlo Gradients

• With gradient decent optimization, computation is to be

conducted for gradients of above cost function expectation

with respect to parameters.

• According to the previously mentioned proposition, along with

the reparametrization trick on variational posterior, the

gradient expression then could be reformulated as:

∂

∂θ
Eq(w|θ)f (w, θ) = Eq(ε)[

∂f (w, θ)

∂w

∂w

∂θ
+
∂f (w, θ)

∂θ
] (13)

• Thus, with the above reformulation, Monte Carlo estimates

could be formed by taking samples from unit Gaussian ε

directly rather than from variational posterior q(w|θ)

48



Algorithm Steps for Optimization with Variational Inference on

Weights Posteriors

• With the previous problem reformulation, utilizing Monte

Carlo estimates, the detailed algorithm steps for optimizing

variational posterior parameters are as following:

1. Sample ε N (0, I ).

2. Let w = µ+ log(1 + exp(ρ))� ε
(with � denoting element-wise multiplication)

3. Let θ = (µ, ρ)

4. Let f (w, θ) = log q(w|θ)− log P(w)P(D|w).

49



Continued: Algorithm Steps for Optimization with Variational

Inference on Weights Posteriors

5. Calculate the gradient with respect to the mean

δµ =
∂f (w, θ)

∂w
+
∂f (w, θ)

∂µ
(14)

6. Calculate the gradient with respect to the standard deviation

parameter ρ

δρ =
∂f (w, θ)

∂w

ε

1 + exp(−ρ)
+
∂f (w, θ)

∂ρ
(15)

7. Update the variational parameters:

µ← µ− αδµρ← ρ− αδρ (16)

• Observation: Note for the above differentiation terms, the term
∂f (w,θ)
∂w is shared among both mean and standard deviation gradients.

• Also notice this term could be found through starting with normal

backpropagation through the network, then scaled and shifted based

on other components within the derivative trivially computed.

50



Some Details, Variations for the Algorithm

• Scale mixture prior:

• As no closed form complexity cost and entropy term is required. Design

constraint on prior could be relaxed.

• In the paper, the prior is used with a mixture of two Gaussians: one with

small variance and another with large variance, which resembles

”spike-and-slab” prior (to be covered more in later ”Sparsification” section).

• Minibatches and KL re-weighting

• Recall the KL divergence cost being:

f (D, θ) = KL[q(w|θ)||P(w)]− Eq(w|θ)[log P(D|w)] (17)

• This cost function could be optimized by breaking down into components

corresponding to minibatches:

f πi (Di, θ) = πiKL[q(w|θ)||P(w)]− Eq(w|θ)[log P(Di|w)] (18)

With πi = 2M−i

2M−1 (”M” being amount of minibatches).

• This partition weight coefficients πi ensures first few minibatches focus

heavily on complexity cost; while in later minibatches with more and more

data observed, data likelihood gradually becomes the focus for the cost

function.

51



Local Reparameterization Trick Variational Dropout and the

Local Reparameterization Trick

By Diederik P. Kingma, Tim Salimans, and Max Welling

52



Motivation

• If the variance in the gradients is too large, the stochastic

gradient ascent may not perform well.

• What’s the variance of the Stochastic Gradient Variational

Bayes (SGVB) estimator and how can we reduce it?

53



Variational Inference

• Given N i.i.d. observation tuples (x, y) ∈ D, we want to learn

a model with parameters w of the conditional probability

p(y|x,w)

• Optimize parameters φ of parameterized model qφ(w) such

that qφ(w) closely approximates p(w|D) as measured by

KL-divergence.

• Done by maximizing Evidence Lower Bound L(φ) of the

marginal likelihood of the data:

L(φ) = −DKL(qφ(w)||p(w)) +
∑

(x ,y)∈D

(Eqφ(w)[log p(y|x,w)])

︸ ︷︷ ︸
Expected Log-Likelihood LD(φ)

(19)

54



Stochastic Gradient Variational Bayes (SGVB)

• The SGVB parameterize the random parameters w ∼ qφ(w)

as w = f (ε, φ) with f (.) differentiable and ε ∼ p(ε) a random

noise variable.

• The unbiased differentiable minibatched-based Monte Carlo

estimator of the expected log-likelihood:

LD ' LSGVB
D (φ) =

N

M

M∑
i=1

log p(yi |xi ,w = f(ε, φ)) (20)

where (xi , yi )Mi=1 is a minibatch of data with M random datapoints

from data D

55



Variance of SGVB

• Let Li = log p(yi |xi ,w = f(ε, φ)) as a shorthand

• The variance of the estimator:

Var [LSGVB
D (φ)] =

N2

M2

( M∑
i=1

Var [Li ] + 2
M∑
i=1

M∑
j=i+1

Cov [Li , Lj ]

)
(21)

= N2

(
1

M
Var [Li ] +

M − 1

M
Cov [Li , Lj ]

)
(22)

• The first term is inversely proportional to minibatch size M,

but the second term (off diagonal covariances) does not scale

by M.

• If we can make the Cov [Li , Lj ] = 0, then the variance will be

inversely proportional to the minibatch size ( 1
M ), leading to

better performance. 56



Näıve Approach

Consider a simple neural network:

• The input to the neural network is a Mx1000 matrix A with

M minibatch size and 1000 input feature dimension.

• A single layer of 1000 hidden units. A 1000x1000 weight

matrix W multiplies the input matrix: B = AW.

• Approx. posterior on W is Gaussian: qφ(wi ,j) = N (µi ,j , σ
2
i ,j),

parameterized as wi ,j = µi ,j + σi ,jεi ,j with ε ∼ N (0, 1)

Näıve approach to ensure Cov [Li , Lj ] = 0:

• Sample a separate weight matrix W for each training example

in the minibatch

• But it’s computationally inefficient: Need to sample

Mx1000x1000 numbers in each minibatch!

57



Local Reparameterization Trick: Computationally Efficient

The paper proposes the local reparameterization trick: Reparameterize

from global noise to local noise to sample from an intermediate

computation state (ε→ f (ε)

• In the simple neural network example, the weights W influence the

log likelihood through the pre-activation neurons B.

• Instead, sample directly from B, requiring only Mx1000 numbers

• Example: for a factorized Gaussian posterior on the weights, the

posterior for the activations (conditional on the input A) is also

factorized Gaussian:

qφ(wi ,j) = N (µi ,j , σ
2
i ,j) ∀wi ,j ∈W =⇒ qφ(bm,j |A) = N (γm,j , δm,j)

γm,j =
1000∑
i=1

am,iµi ,j , δm,j =
1000∑
i=1

a2m,iσ
2
i ,j

• We parameterize bm,j using: bm,j = γm,j +
√
δm,jζm,j with

ζm,j ∼ N (0, 1), where ζ is a Mx1000 matrix.

58



Local Reparameterization Trick: Even Lower Variance

• The local reparameterization trick also leads to lower variance

than naively sampling weight matrices per training example in

the minibatch

• Consider the stochastic gradient estimate w.r.t. posterior

parameter σ2i ,j for minibatch of size M = 1. If we draw

separate weight matrices W:

∂LSGVB
D
∂σ2i ,j

=
∂LSGVB
D

∂bm,j

εi ,jam,i
2σi ,j

(23)

• If we use the local reparameterization trick:

∂LSGVB
D
∂σ2i ,j

=
∂LSGVB
D

∂bm,j

ζm,ja
2
m,i

2
√
δm,j

(24)

59



Experiments

• Comparing variance of gradients on MNIST

Table 1: Average empirical variance of minibatch stochastic

gradient estimates (1000 examples) for a fully connected neural

network, regularized by variational dropout with independent weight

noise.

• Comparing the speed:

• Drawing separate weight samples per datapoint: 1635 seconds

• Using local reparameterization trick: 7.4 seconds

=⇒ an over 200 fold speedup

60



Sparsification



Sparsification: Overview Sparse parameterization & representation

• Saves memory and improves computational efficiency

• Improves learned representation by better ignoring noise in

data

We present:

• Sparsity-inducing priors

• Group sparsity, convolutional neural nets

• Better approximation via non-centered parameterization

61



Sparsity-inducing priors

• p(w |D) ∝ p(D|w)p(w) =⇒ structure of prior could affect

posterior

• What kind of priors could encourage sparsity:

• Having a mean/mode at zero?

• Having a lot of density near zero?

• Neither are sufficient as eg. a N (0, σ2) prior only squashes

weights.

62



Sparsity-inducing priors

• p(w |D) ∝ p(D|w)p(w) =⇒ structure of prior could affect

posterior

• What kind of priors could encourage sparsity:

• Having a mean/mode at zero?

• Having a lot of density near zero?

• Neither are sufficient as eg. a N (0, σ2) prior only squashes

weights.

62



Spike and slab priors

Let’s imagine we use a very complex model and we believe a priori

that a fraction of the weights should be zero.

w ∼ (1− β)δ0(w) + βπ(w) (25)

where δ0 is a peaky distribution at 0 and π a flat distribution.

The slab π in this mixture is important: it allows large values to be

accommodated.

63



Spike and slab priors

• In the extreme case, we use a dirac delta and a uniform

distribution.

• This combination seems to be perceived as a “gold standard”,

but neither actually give useful gradient information, so let’s

use normals.

Maybe use N (0, 0.000001) as the spike and N (0, 1000000) as the

slab?

64



Scale mixture of normals

Instead of a finite mixture, we can take an infinite one. Define:

(w |λ) ∼ N (w |0, λ2), λ ∼ p(λ) (26)

The marginal distribution of w (integrating λ out) is the mixture

of various normal distributions that are centered at zero with

different scales

p(w) =

∫
p(λ)N (w |0, λ2)dλ (27)

65



Scale mixture of normals defined by different p(λ)

p(w) =

∫
p(λ)N (w |0, λ2)dλ (28)

p(λ) p(w) Regularization

Dirac delta Normal Ridge Regression (L2)

Exponential Laplacian LASSO (L1)

Inverse Gamma Student-t RVM

Log-normal (∝ 1
|λ|) Log-normal

Half-Cauchy Horseshoe

Table 2: Correspondence of distributions of λ, marginal distributions of

w , and regularization schemes.

66



The horseshoe prior

The horseshoe distribution p(w) has no closed-form equation but

behaves essentially like log(1 + 2/w2).

• p(w = 0) =∞
• Heavy tail.

67



A heavy tail vs. the Law of Large Numbers

Heavy tail: high probability of sampling a large value.

68



Advantages of Horseshoe

• Horseshoe has both an

infinite spike at zero and

a heavy tail.

• Recall w |λ ∼ N (w |0, λ2)

• Define κ = 1/(1 + λ)

• λ→∞ =⇒ κ→ 0 =⇒
w → w∗

• λ→ 0 =⇒ κ→ 1 =⇒
w → 0

• Horseshoe gives less

incentive to interpolate

between w∗ and 0

compared to Laplacian.
69



Group Sparsity in Neural Nets

• Grouping outgoing weights

by unit: inducing

dependence between

outgoing weights from the

same hidden unit

• For the i-th hidden, define

scale variable zi

(log-normal/half-Cauchy)

• Outgoing weight wi ,j has

scale-mixture prior with

scale zi

• Define approximate

posterior to also factorize

in this manner 70



Group Sparsity in Neural Nets

What we need for VI to work:

• Efficient Sampling from approximate posterior

• Achieved by ancestral sampling. Sample zi from q(zi ), then

sample wi,j from q(wi,j |zi )
• Evaluating the KL(q(W ,Z )||p(W ,Z ))

• Eq(Z)[KL(q(W |Z )||p(W |Z ))] + KL(q(Z )||p(Z ))

• KL(q(W |Z )||p(W |Z )) can be computed in closed form when

q(W |Z ) and p(W |Z ) are Gaussians

• KL(q(Z )||p(Z )) can be computed in closed form when both

q(Z ) and p(Z ) are Gaussian OR q(Z ) is half-Cauchy and p(Z )

is log-normal

• Differentiability w.r.t. variational parameters is guaranteed

71



Group Sparsity in Neural Nets

Other Details:

• Group pruning is determined by simple thresholding using

certain statistics of the approximate posterior of z

• Local & global pruning: local to unit, global to layer

• Decomposing half-Cauchy R.V. into product of Inverse

Gamma and Gamma R.V.s

• Inferring bit-precision

72



Inferring bit-precision

Using the average marginal variance V(wi ,j) across layer, we can

infer the unit round off precision.

73



Related Work: Model Selection in Bayesian Neural Networks

via Horseshoes Priors

• Induces

heavy-tailed priors

over network

weights using

scale mixture of

Gaussians

• Induces unit level

sparsity by sharing

a common prior

for all weights

incident to same

unit

74



Experimental Results: Centered VS Non-Centered Parameter-

izations

75



Centered Vs Non-Centered Parameterization

76



J. Ingraham and D. Marks, “Variational inference for sparse

and undirected models,” in Proceedings of the 34th

International Conference on Machine Learning (D. Precup and

Y. W. Teh, eds.), vol. 70 of Proceedings of Machine Learning

Research, (International Convention Centre, Sydney,

Australia), pp. 1607–1616, PMLR, 06–11 Aug 2017.

S. Ghosh and F. Doshi-Velez, “Model Selection in Bayesian

Neural Networks via Horseshoe Priors,” ArXiv e-prints, May

2017.

C. Louizos, K. Ullrich, and M. Welling, “Bayesian Compression

for Deep Learning,” ArXiv e-prints, May 2017.

C. M. Carvalho, N. G. Polson, and J. G. Scott, “Handling

sparsity via the horseshoe,” in Proceedings of the Twelth

International Conference on Artificial Intelligence and

76



Statistics (D. van Dyk and M. Welling, eds.), vol. 5 of

Proceedings of Machine Learning Research, (Hilton Clearwater

Beach Resort, Clearwater Beach, Florida USA), pp. 73–80,

PMLR, 16–18 Apr 2009.

76


	Variational Autoencoders (VAE) Kingma and Welling, 2014. Auto-encoding variational Bayes.
	From Autoencoders to Variational Autoencoders
	What is Variational Inference?

	Variational Inference for BNNs
	Origins of VI: MDL interpretation Hinton and van Camp, 1993. Keeping the neural networks simple by minimizing the description length of the weights.
	Practical VI for Neural Networks
	Weight Uncertainty in Neural Networks
	The Local Reparameterization Trick

	Sparsification

