
Bayesian Neural Networks - Presenters

1

Group 1: A Practical Bayesian Framework for Backpropagation Networks - Slides 2-40
● Paul Vicol
● Shane Baccas
● George Alexandru Adam

Group 2: Priors for Infinite Networks - Slides 41-64
● Soon Chee Loong

Group 3: MCMC using Hamiltonian Dynamics - Slides 65-91
● Tristan Aumentado-Armstrong
● Guodong Zhang
● Chris Cremer

Group 4: Stochastic Gradient Langevin Dynamics - Slides 92-110
● Alexandra Poole
● Yuxing Zhang
● Jackson K-C Wang

Bayesian Neural Networks

CSC2541:
Scalable and

Flexible Models of Uncertainty

Overview

● With Bayesian methods, we obtain a distribution of answers to a question

rather than a point estimate

● This can help address regularization and model comparison without a held-out

validation set

○ Compare and choose architectures, regularizers, and other hyperparameters

● Can also compute a distribution over outputs: place error bars on

3

Motivation - Why use Bayesian Neural Nets?

Overview

● Parameters represented by single, fixed
values (point estimates)

● Conventional approaches to training NNs
can be interpreted as approximations to
the full Bayesian method (equivalent to
MLE or MAP estimation)

4

Standard NN vs BNN

Standard Neural Net Bayesian Neural Net

● Parameters represented by distributions
● Introduce a prior distribution on the weights

 and obtain the posterior
through Bayesian learning

● Regularization arises naturally through the
prior

● Enables principled model comparison
Images from: Blundell, C. et al. Weight Uncertainty in Neural Networks. ICML 2015.

Overview

Squared error (no regularization)

5

Conventional Training as Bayesian Approximation

Squared error (+ regularization)

Minimizing: Is Equivalent To:

Maximum likelihood estimation

MAP estimation with a Gaussian prior

where

Overview

● Many problems addressed by Bayesian methods involve integration:

○ Evaluate distribution of network outputs by integrating over weight space

6

The Role of Integration in Bayesian Methods

● Compute the evidence for Bayesian model comparison

● These integrals are often intractable, and must be approximated

Overview

● Gaussian approximation (1/2): Allows the integrals to be evaluated analytically

○ Optimization involved in finding the mean of the Gaussian

● Monte Carlo methods (2/2): Draw samples to evaluate the integral directly

● Variational inference (next week): Convert integration into optimization

○ Minimize KL divergence between the posterior and a proposed parametric function
7

Methods of Approximating Integrals

Image from: MacKay, D. Information Theory, Inference, and Learning Algorithms. Cambridge University Press. p. 341. 2003.

Overview

● Understand how to apply Bayesian model comparison to neural networks

● Explore the connection between neural networks and Gaussian Processes

○ Understand the meaning behind the prior distributions imposed over network

parameters as the first step in Bayesian inference

○ What types of functions do BNNs compute when their weights are drawn from

certain types of prior distributions?

● Understand how the computations required by the Bayesian approach can be

performed using Markov Chain Monte Carlo methods

○ Hamiltonian Monte Carlo

○ Stochastic Gradient Langevin Dynamics (SGLD) 8

BNNs - Topics

A Practical Bayesian Framework
for Backpropagation Networks

Paper by: David J. C. MacKay

Presented by: Paul Vicol, Shane Baccas, George-Alexandru Adam

Overview

● Bayesian methods can be applied at two stages of a data modeling problem:

1. Fitting a specific model to data by inferring its parameters

2. Comparing and ranking alternative models

● Bayesian evidence enables principled comparisons between alternative

neural network architectures and regularization methods

● Key result: For models well-suited to a problem, Bayesian evidence and

generalization error are correlated

10

Overview

Add regularizing term to penalize large
weights for a smoother mapping:

A neural network with
architecture and
parameters that defines a
mapping

Defining a Neural Network Model for Regression

11

Dataset

Model

Data Error: Sum of Squared Errors

Obtain a regularized cost function:

Regularization

A Neural Network Model for Regression

● Split data into disjoint training/validation sets
● Optimize network parameters on training set
● Optimize control parameters like and on

validation set

Motivation for Bayesian Methods

● Many free parameters, including:
○ The architecture
○ The regularization strength
○ The regularizer ()

● Need a large val set to achieve a good
signal to noise ratio

● Cross-validation is computationally
demanding

● Grid search over many parameters is not
tractable

DrawbacksCommon method to compare networks

12

Motivation for Bayesian Methods

What We Want

● We would like objective criteria to set control parameters and compare

alternative solutions

● In particular, techniques that do not require creating a held-out test set

○ Critical in situations where data is limited

● We want to use all the data for both:

○ Optimizing the weights , and

○ Optimizing control parameters , , and

13

What We Want

The Difficulty of Model Comparison: Occam’s Razor

● We can’t just choose the model that fits the data best
○ More complex models will always fit better, but fail to generalize

● Should account for Occam’s Razor: balance data fit and model complexity
14

The Difficulty of Model Comparison: Occam’s Razor

Image from: MacKay D., Bayesian Interpolation. Neural Computation 4, 415-447. 1992.

Bayesian Model Comparison

● Bayesian model comparison: determine which class of models is best
suited to explain the observed data

● We rank alternative models by computing the evidence:

15

● Bayesian evidence embodies Occam's razor naturally
○ Penalizes overly complex models
○ Helps detect poor assumptions in learning models

Bayesian Model Comparison

● Two advantages:
○ We can estimate hyperparameters iteratively using entire data set.
○ We can provide “well calibrated” confidence intervals around a

prediction:

● Under the Bayesian regime, we are not interested in the values of the
weights, instead we make predictions using the marginal likelihood
function (predictive distribution) whose mean is

Bayesian Neural Networks

● Retains the same topology of regular Neural Nets, however we assume a
prior distribution over the weights and we follow an iterative procedure for
estimating the hyperparameters.

16

Bayesian Neural Networks Overview

17

Prior distribution over target variables Prior distribution over weights

Likelihood function (assuming iid)

Then

Which is not Gaussian because the
function y is a neural network whose
dependence on w is non-linear

→ We will build a Gaussian Approximation to the log-posterior.

Posterior

Laplace Approximation

● Replace the posterior by a Gaussian centered at a peak of
the posterior (a mode)

● The covariance of the Gaussian is small
● Assumes that the posterior distribution has a global

maximum

Image from: https://en.wikipedia.org/wiki/Laplace%27s_method

Gaussian Approximation to the Posterior

19

● The main idea in the procedure is to find a non-unique mode of the
log-posterior (through BP and SGD) and use this mode with Laplace
approximation to find the Gaussian approximation about that particular
mode:

We then find the Hessian:

Thus by Laplace approximation the posterior Gaussian approximation becomes:

Neural Net Weight Space Symmetry

● If we permute all connections of one neuron with another in the same layer
(e.g., swap positions of the neurons), the network output is unchanged
○ Because the weighted contributions of neurons are summed (order-invariant).
○ This causes many local minima (see figure on right)

20

Neural Net Weight Space Symmetry

Original figures: Left and right by G. A. Adam, center by P. Vicol

Towards the Predictive Distribution

● The predictive distribution is then given by:

● Unfortunately this is still analytically intractable because our hypothesis

function is a non-linear neural net. So we approximate with its

first-order Taylor series expansion:

where

21Where:

● Now we can approximate the predictive distribution with

● This gives us:

Learning Hyperparameters Online

● To learn and , the precision parameters over our prior distributions,

online we need to find marginal likelihood over and by integrating over

the network weights.

22

Where:

● Which gives us:

● Notice these equations only implicitly define and . We must first begin

with guesses for and and we update our guesses using the posterior

distribution, as new batches of data come in.

Maximizing Joint Log-Marginal for and

● To find maximum likelihood point estimates for α define the eigenvalue equation

23

where and

● This implies

where evaluated at

Energy-Based Probabilistic Interpretation

● Using the standard Bayesian framework of likelihood, prior and posterior, we
define the following probabilities:

Prior

Posterior

Likelihood Prior Likelihood

Posterior

● Probabilistic assumptions on the random variables of interest:

○ where corresponds to particular with

additive Gaussian noise

○ the random vector is Gaussian with mean 0 and

precision parameter

● This implies:

Bayesian Approach over Architectures

25

Prior:

Likelihood:

Posterior:

Gaussian Integrals

○ P(T) ~ N(E[T|X=x^(m)],

1/ß) i.e. the r.v. T

● E[T|X=x^(m)] ≈ y(x^(m), w, A)

○ P(w) ~ N(0, 1/\alpha)

, for

● Finding the most probable value of for the posterior, i.e., is

equivalent to minimizing the regularized cost function , defined as

Finding the Posterior

● The posterior is given by

26

But how do we find the parameters and ?

For we must use Laplace approximation for

Gaussian integrals

MacKay Bayesian Framework

By Bayes Theorem:

We assign a uniform prior to and and have

Now let and

27

Now let: N:= |D|*|dim(t^(m))| & k = dim(w)
Evaluate integrals directly

Estimating and for NNs

● Assume:

○ The posterior probability of and consists of well separated islands in parameter
space each centered around a minimum of

● Consider a minimum of and define the solution as the ensemble of
networks A in the neighborhood of and all symmetric permutations of that
ensemble.

28

● Posterior probability of solution is:

where

● Where is the Hessian of evaluated at

● This approximation works when is “large” by C.L.T.

● Also:
○ Recent paper from Pennington and Bahri (JMLR, 2017) also treats

Hessian estimation for NNs using Random Matrix Theory

How do we Calculate ?

● We have expressions for every quantity but ; because of our assumption,
we can use Laplace approximation:

29

|D|/dim(x^(m))

● It is important to note we do NOT need the posterior of and over the entire
set of possible architectures (this would be computationally infeasible)

● Instead we wish to compare pre-trained NNs which have found their own
minimum and rank them in some objective manner

Comparing Models

● To assign preference to alternative architectures and regularizers, we
evaluate the evidence of the solutions we found by
marginalizing out and :

Evidence and Generalization Error

● Evidence and generalization error are correlated

● But evidence is not always a good predictor of generalization error

○ Validation error is noisy, and requires a large held-out dataset

○ If two models yield identical regression results, their gen errors are the same, but

evidence may differ due to model complexity (penalized by the Occam factor)

31

Evidence and Generalization Error

Model Complexity and Generalization Error

Train Error Test Error

Image from: Hastie, T. et al., Elements of
Statistical Learning. Springer. p. 38. 2013.

Evidence - Occam Hill

33Evidence vs Num Hidden Units

Occam hill

Evidence - Occam Hill

Occam factor

Comparing Models

● The second last slide showed us
that using training error on its own
will lead to overfitting and poor
generalization

● The red circled region shows
models with good generalization
but low evidence

● This contradicts what we thought
Bayesian model comparison does

● We must be missing something!

Test Error vs Log Evidence

Failure as an Opportunity to Learn

● What if the evidence is low, but generalization error is good (low)?

○ i.e., we have poor correlation between evidence and gen error

● Then the model likely does not match the real world

● Learn from the failure: Check and evaluate model assumptions, try new

models until one achieves better fit with the data

○ This is a benefit of using Bayesian methods; from gen error, can’t discover the

inconsistency between the model and data

35

Failure as an Opportunity to Learn

Inconsistent Prior

● Our loss function is standard, so let’s look at our prior more closely

● Suppose we rescale the inputs ● Our prior is inconsistent
Then we could rescale the weights in the first
layer and end up with the same mapping

Net B does the same thing yet the prior
penalizes Net B more than Net A

Original figure
by G. A. Adam

Adjusting the Prior

● The previous prior assumed dependence in the scale of the weights between
layers

● Let’s use a prior that has
independent regularizing
constants for each layer:

● Notice how the bottom left
region of high evidence but
poor generalization no
longer exists

Overview

● Variance of the Gaussian prior for the weights and biases is a hyperparameter

○ Allows the model to adapt to the degree of smoothness indicated by the data

● Improved by using several variance hyperparameters, one for each type of

parameter (input-to-hidden weights, hidden biases, and output weights/biases)

● This emphasizes the advantages of hierarchical models

● Makes sense: Network inputs and outputs are different quantities with different

scales; using a single variance hyperparameter depends on arbitrary choice of

measurement units.
38

Summary from Neal

Conclusion

● Bayesian evidence is in fact a good predictor of generalization ability

● Combined with generalization error, it can help us determine if we are using

an inconsistent regularizer and change our worldview

● Evidence is maximized for neural nets with reasonable numbers of hidden

units

● Computational difficulty arises in calculating the Hessian, its inverse, and

determinant

● This framework is also applicable to classification problems

○ Error landscape would look totally different since we would be using different loss functions

References

● Blundell, C. et al. Weight Uncertainty in Neural Networks. ICML 37,
1613-1622, 2015.

● MacKay, D. Information Theory, Inference, and Learning Algorithms.
Cambridge University Press. 2003.

● MacKay, D. A Practical Bayesian Framework for Backpropagation Networks.
Neural Computation 4, 448-472, 1992.

● MacKay, D. Bayesian Interpolation. Neural Computation 4, 415-447, 1992.
● Laplace Approximation. https://en.wikipedia.org/wiki/Laplace%27s_method.

Retrieved September 25, 2017.
● Pennington, J. and Bahri, Y. Geometry of Neural Network Loss Surfaces via

Random Matrix Theory. PMLR 70, 2798-2806, 2017.

https://en.wikipedia.org/wiki/Laplace%27s_method

Priors for Infinite Networks

By: Radford M. Neal

Chapter 2 of Bayesian Learning for Neural Networks

Presented by: Soon Chee Loong

Based on:

Overview

● The weights of a network determine the function computed by the network

● In a BNN, the weights are drawn from a probability distribution; intuitively, we

can interpret the BNN as representing a distribution over functions

● The first step in Bayesian inference is the specification of a prior
○ e.g., a prior over weights,

● Given a prior over the weights, what is the prior over computed functions?

● Connection between bayesian neural networks and Gaussian Processes

42

Distributions over Weights and Functions

Overview

● How do we decide priors for neural networks?

● A single hidden layer neural network with infinite hidden units

converges to a Gaussian Process.

● A single hidden layer neural network with infinite hidden units

approaches a limiting distribution.

● The choice of hidden function activation influences the type of functions

sampled from the prior.

● Not covered from Radford’s Chapter 2 Thesis: Hierarchical Models

43

Overview

Overview

● Prior represents our beliefs about the problem.
○ Recap: Coin toss problem, heads and tails with 50% probability makes sense to us.

■ Solve problem due to M.L.E. with coin toss by introducing uniform priors.
● Neural Networks

○ priors over weights/biases has no obvious connection to input.

● The use of infinite networks makes sense from the standpoint of prior beliefs

○ We usually don’t believe that the function we want to learn can be perfectly

captured by a finite network.

● Properties of gaussian priors for infinite networks can be found analytically.

44

Motivation: Selecting Priors

Overview

● Bayesian Occam Razor: Bayesian approach:
○ can increase model parameters to infinity without overfitting.

● In practice, limited by computational resources (memory, time)

● NOT restricted based on size of training set.

● Wouldn’t we overfit? No, if we regularize it properly.
○ Analogous to Neural Networks:

■ “Make network as big as possible”
■ “Then, regularize using weight decay, dropout.” (Jimmy Ba, ECE521 2017 Lecture)

● What should we increase in Neural Networks to Infinity?
45

Motivation: Bigger is Better

Overview

● Universal Approximation Theorem:
○ can approximate any continuous function with a neural network with 1 hidden layer.

● Hence, focus on extending hidden layer to infinite number of hidden units.

● Assumption: Computationally feasible to produce mathematically correct

results for infinite hidden units.

46

Universal Approximation Theorem.

- Online Open Access Textbooks, 9.3 Neural Network Models

https://www.otexts.org/fpp/9/3
https://www.otexts.org/fpp/9/3

Overview

● Since no obvious connection, what priors do we use?

● Gaussian with zero mean is standard.

● Historically by David Mackay,
○ Gaussian with zero mean has worked well for his work.

○ Minimize standard deviation of priors as a form of regularization.
■ Similar to weight decay for neural networks.

47

What Priors to Use

- Natural Resource Biometrics, NR3110

http://oak.snr.missouri.edu/nr3110/topics/distribution.php
http://oak.snr.missouri.edu/nr3110/

Overview

● Consider a Bayesian Neural Network with a single hidden layer:

48

Infinite Networks → Gaussian Processes

.

.

.I

H

O

input-to-hidden hidden-to-output

● Examine the prior
distribution on the output
value for a fixed input

We want to find

Original figure by P. Vicol

Overview

● Behavior of output

● Total Variance

○ Central Limit Theorem

49

Output Variance Limit Behavior Without Regularization

Need to get rid of dependence on H

- Bishop, Pattern Recognition and Machine Learning

Overview

● Reduce initialization variance as form of regularization

50

Output Variance Limit Behavior With Regularization

Overview

51

Output Variance With Regularization

Output variance finite!

Overview

52

Output Variance With Regularization

Proof works for any

zero mean, finite variance

prior distribution.

Output variance finite!

Overview

● Similarly, (mathematical proof for Prior Joint Distribution)

● Gaussian Priors converge to Gaussian Process

as number of hidden units increases.

53

Priors Converge to Gaussian Process

Overview

54

Functions Drawn Approaches Limiting Distribution
(From CSC2541 2017: Lecture 2 pg. 36 of 55)

Overview

55

Functions Drawn From Prior Distribution
 With Step(z) Hidden Activation
Approaches Limiting Distribution
H = 300 H = 10000

Converges

Converges Converges

Converges

- Radford Neal, PhD Thesis, Chapter 2

Overview

● How does Hidden Unit Activation affect output function sampled?
○ h(z) = sign(z)

○ h(z) = tanh(z)
● Gaussian Prior with zero mean.

● Priors properties are determined by the covariance function.

○ Smooth

○ Fractional Brownian

○ Brownian

56

Priors to Brownian or Smooth Function

Overview

57

Priors that Lead to Brownian Functions

● Let input-to-hidden weights and hidden biases have Gaussian distributions

0.5

● Step activations

● The function is built up of small,

independent, non-differentiable

steps contributed by hidden units.

● Brownian

.

.

.

1

0.5

0.5

-1

1

1

-0.8

0.2

0.7Original figure by P. Vicol

Overview

58

Priors that Lead to Smooth Functions

● Let input-to-hidden weights and hidden biases have Gaussian distributions

0.5

● Tanh activations

● The function is built up of small,

independent, differentiable tanh

contributed by hidden units

● Smooth

.

.

.

1

0.5

0.5

-0.3

0.45

0.95

-0.8

0.2

0.7

Overview

Gaussian priors, step() hidden units
59

Priors that Lead to Smooth and Brownian Functions

Gaussian priors, tanh() hidden units
- Radford Neal, PhD Thesis, Chapter 2

Overview

60

Tanh(): Smooth Converges to Brownian
as the prior over the mean increases to infinity

Gaussian priors, hidden units
- Radford Neal, PhD Thesis, Chapter 2

Overview

● Behavior is based on Covariance Function

● Re-write covariance function in terms of the differences.

61

Priors to Brownian or Smooth Function

Overview

● Priors properties are determined by the covariance function.
○ Smooth

■

○ Fractional Brownian

■

○ Brownian

■

62

Prior over Function Covariance Properties

- Radford Neal, PhD Thesis, Chapter 2

Overview

63

Non Gaussian Prior (Cauchy)
with Step Hidden Activation

Gaussian Prior with Step()
Non-Gaussian Prior

(Cauchy) with Step()
Large jumps from

single hidden unit.

- Radford Neal, PhD Thesis, Chapter 2

Overview

● Can solve many problems not solvable by

GPs: e.g., representation learning

64

GPs vs NNs

Neural Networks Gaussian Processes
● Simple matrix operations on the

covariance matrix of the GP
● Optimizing parameters of a network

● When would we use NNs vs GPs?

● GPs are just “smoothing devices” (MacKay, 2003)
○ Are NNs over-hyped, or are GPs underestimated? (MacKay says both.)

● GPs are easy to implement and use - few

parameters must be specified by hand

● Inverting an NxN matrix is expensive -

Can’t scale to large datasets (N > 1000)

Hamiltonian Monte Carlo

Based on: MCMC using Hamiltonian Dynamics by
Radford Neal

Presented by: Tristan Aumentado-Armstrong, Guodong Zhang, Chris Cremer

Markov Chain Monte Carlo (MCMC) I

● Recall: in Bayesian analysis, we often desire integrals like

(Posterior Predictive Dist.)

 (Expectation of y=f(x|θ))

66

● But how can we actually evaluate these integrals when θ is very high

dimensional? Use Markov Chain Monte Carlo (MCMC), which is much less

affected by dimensionality.

Markov Chain Monte Carlo (MCMC) II

● Monte Carlo is a way of performing this integration, by transforming the

problem in the following way:

67

 where θi is distributed according to the posterior for the parameters, P(θ|D)

● This transforms our integral into a sampling problem, so that we now just

need a way to sample from the posterior

The Metropolis-Hastings (MH) Algorithm I

● MH is an MCMC algorithm for sampling from the posterior P(θ|D)

● Intuition: Run a Markov chain with stationary distribution P(θ|D)

● Algorithm (Assume: Q(θ) ᵙ P(θ|D))

○ Start from initial state θ0

○ Iterate i = 1 to n:

■ Propose:

■ Acceptance Probability

68

The Metropolis-Hastings (MH) Algorithm II

● Given enough time, MH converges to sampling from

the stationary distribution
○ At this point, states are samples from the posterior (as desired)

● Common proposal choice: Random Walk MH

○ The proposal perturbs the current state (e.g. Gaussian noise)
and is symmetric

○ The new proposed state is accepted/rejected based on how
likely the parameters are according to the posterior

69

Murray, MCMC Slides, Machine
Learning Summer School 2009

The Metropolis-Hastings (MH) Algorithm III

● This accept-reject step ensures that the state update (transition) satisfies the

equations of detailed balance

70

● Such chains are reversible, which is desirable for MCMC algorithms

○ Reversibility can be used to show the MCMC updates don’t alter Q

○ This is sufficient for the chain’s stationary distribution to exist and, in this case,

equal our posterior by construction

 where is the state transition probability

The Metropolis-Hastings (MH) Algorithm IV

● Choosing a proposal distribution: e.g.
○ Balance exploration (reach areas with support) & visiting high probability areas more

○ Control the random walk step size with ṓ
■ Too large: too many rejections
■ Too small: explores the space too slowly

● Drawbacks of the Random Walk MH Algorithm
○ The algorithm may find it very difficult to move long distances in parameter space

■ Random walks are not very efficient explorers

○ If ṓ is too large or small, then the samples will be too dependent (lower effective sample size)

● We want a way to move larger distances, yet still have a decent chance of

acceptance - Idea: prefer moving along level sets of an energy related to Q
71

72

Hamiltonian Monte Carlo - Motivation

● For MCMC, the distribution we wish to sample can be related to a
potential energy function via the concept of canonical distribution from
statistical mechanics

● We can draw samples from canonical distribution using random walk
Metropolis (guess-and-check). But it cannot produce distant proposals
with high acceptance probability.

Canonical distribution

http://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.html

Hamiltonian Monte Carlo - Motivation

● The key here is to exploit additional information to guide us through the
neighborhood with high target probability.

Gradient !!!

image credit: A Conceptual introduction to Hamiltonian Monte Carlo

Hamiltonian Monte Carlo - Motivation

● Following along the gradient would pulls us towards the mode of the
target density. We lose the chance to explore new and unexplored
areas.

image credit: A Conceptual introduction to Hamiltonian Monte Carlo

Momentum !!!

Hamiltonian energy

● Introduce the momentum (where is variable of interest, say position)

● We can now lift up the target distribution onto a joint distribution

● By the definition of canonical distribution, the expanded system defines a
Hamiltonian energy that decomposes into a potential energy and kinetic
energy.

Note: for convenience, I just use one-dimensional notations in my slide.

Hamiltonian dynamics

● Hamiltonian dynamics describe how kinetic energy is converted to
potential energy (and vice versa) as a particle moves throughout a system
in time.

● This description is implemented quantitatively via a set of differential
equations known as the Hamilton’s equations:

● These equations define a mapping from to

77

Property - Reversibility

Property 1: For the mapping from to , we can find
inverse mapping by first negating , applying , and negating again.

negatenegate

Note: Detailed balance requires each transition is reversible.

Property - Hamiltonian Conservation

Note: In practice, Hamiltonian is approximately invariant.

Property 2: Hamiltonian H doesn’t have a functional dependence on
time. It’s invariant over time.

Property - Volume Preservation

Property 3: In Hamiltonian dynamics, any contraction or expansion in
position space must be compensated by a respective expansion or
compression in momentum space.

Sufficient and necessary condition: the determinant of Jacobian
matrix of the mapping having absolute value one

 A B

Leave target distribution invariant

● Hamiltonian Conservation

● Reversibility

● Volume Preservation

Discretizing Hamilton’s equations

● For computer implementation, Hamilton’s equations must be approximated
by discretizing time, using some small stepsize, .

● The best known way to approximate the solution is Euler’s method

● Euler’s method is not volume preserving and not
reversible.

image credit: MCMC using Hamiltonian dynamics

Leapfrog method

Note: each step is “shear” transformation which is volume
preservation.

https://en.wikipedia.org/wiki/Shear_mapping

● In practice, using finite stepsizes will not preserve the Hamiltonian
exactly and will introduce bias in the simulation.

● HMC cancels these effects exactly by adding a Metropolis
accept/reject stage, after n leapfrog steps, the proposed state will be
accepted with the probability , defined as

83

Accept / Reject

image credit: MCMC using Hamiltonian dynamics

84

Summary

● Sample momentum from its canonical distribution

● Perform n leapfrog steps and obtain the proposed state

● Accept/reject the proposed state

MH vs HMC

● Initialize x

● For s=1,2...N:

○ Sample momentum
v = N(0,M)

○ Simulate Hamiltonian dynamics
 x’,v’ = LF(x,v)

○ Accept sample with probability:
min(1, p(x’,v’)/p(x,v))

○ If accept:
x = x’

○ Else:
x = x

● Initialize x

● For s=1,2...N:

○ Sample from proposal
 x’ ~ q(x’|x)

○ Accept sample with probability:
min(1, p(x’)q(x|x’)/p(x)q(x’|x))

○ If accept:
x = x’

○ Else:
x = x

Metropolis-Hastings Hamiltonian Monte Carlo

Visualization

● MH: https://chi-feng.github.io/mcmc-demo/app.html#RandomWalkMH,banana

● HMC: https://chi-feng.github.io/mcmc-demo/app.html#HamiltonianMC,banana

86

https://chi-feng.github.io/mcmc-demo/app.html#RandomWalkMH,banana
https://chi-feng.github.io/mcmc-demo/app.html#HamiltonianMC,banana

HMC - Bayesian Perspective

● Goal: Sample x ~ p(x)
○ Construct Markov chain p(x’|x)

○ Want:
■ High acceptance probability: p(x’)/p(x) (more efficient, less rejections)

■ Distant proposals: x’ far from x (better mixing)

● Introduce auxiliary variable v and integrate it out
○ x ~ p(x) = /int p(x,v) (sampling momentum)

○ Chain becomes: p(x’,v’|x,v)
○ Acceptance becomes: p(x’,v’)/p(x,v)

■ This ratio can stay high while x’ can be very different than x

■ Hamiltonian dynamics achieves the desired properties
87

How do we know we’re sampling the correct distribution?

● Detailed Balance (sufficient but not necessary)

88

Metropolis-Hastings Hamiltonian Monte Carlo

Why:

HMC for BNNs

● Radford Neal Thesis - Chapter 3

89

 Proposal Acceptance
Solid: .1 76%
Dotted: .3 39%
Dashed: .9 4%

HMC .3 87%

Exploration Experiment

Y-axis: square root of the
average squared magnitude
of the hidden-output weights

X-axis: super-transitions
(2000 steps)

Data Sub-Sampling in MCMC

● Problem:

○ Computing likelihood for MH acceptance step requires the whole dataset

○ For HMC, also need gradient of whole dataset

● Stochastic Gradient HMC (2014)

● Towards scaling up Markov chain Monte Carlo: an adaptive subsampling approach (2014)

● Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget (2014)

90

References

91

● MCMC & MH Introduction/Tutorials
○ Neal, Bayesian Learning for Neural Networks, Chapter 1, 1995

○ Robert, The Metropolis-Hastings Algorithm, 2016

○ Yildirim, Bayesian Inference: Metropolis-Hastings Sampling, 2012

Stochastic Gradient Langevin Dynamics

By: Max Welling, Yee Whye Teh

92

Presented by: Alexandra Poole, Yuxing Zhang, Jackson K-C Wang

Bayesian Learning via Stochastic Gradient Langevin DynamicsBased on:

Bayesian Dark Knowledge
By: Balan et al.

Overview

● Bayesian learning for small mini-batches
✫ Bridging optimization and Bayesian learning

■ Recall Lecture 1: learning MAP versus learning the posterior distribution

● Simple framework that transitions from optimization to posterior sampling

● 2 perspectives on the algorithm
○ Adding Gaussian noise to Stochastic Gradient Descent (SGD) updates

○ Mini-batch Langevin Dynamics (LD)

● This paper is not
○ just proposing a new optimizer

93

● Langevin Dynamics is used for the proposal step in Metropolis-adjusted Langevin Algorithm(MALA)
○ MALA is a technique of MCMC (proper posterior sampling technique)

● Only a slight modification of Full Batch GD
○ Injects Gaussian noise to parameter updates

The reject/accept step from the classic MALA framework is dropped here, because when epsilon is small
enough, the acceptance rate approaches 1.

Langevin Dynamics

94

Full Batch GD Langevin Dynamics

Bayesian Learning

Langevin Dynamics

95

● MALA: animation
○ Href: https://chi-feng.github.io/mcmc-demo/app.html#MALA,banana
○ Why is having a small stepsize important in this paper? (try it!)

■ Notice how when stepsize is reduced, the acceptance rate goes up!

https://chi-feng.github.io/mcmc-demo/app.html#MALA,banana

SGD

96

Full Batch GD

In SGD, at each iteration t, update is performed based on a subset of data,

● approximating the true gradient over the whole dataset
● N, and n can differ by orders of magnitude (e.g. 128 vs 1,000,000)

○ In practice, optimization of NN (non-Bayesian) appears to take a long time (large number of
iterations), but it usually translates to <50 passes over the full dataset (epoch).

○ But 50 samples for MCMC is definitely not enough

Mini Batch GD (SGD)

Optimization

SGLD

97

Full Batch GD Langevin Dynamics

Mini Batch GD (SGD) SGLD

Visually speaking…

98

The figures are actually animations in the presentation.
Please visit: https://github.com/wangkua1/SGLD-presentation-supp/tree/master

99

Approximately recovers LD Let’s rewrite SGLD

Justify SGLD

100

● What approximation is SGLD making to MALA, and why is it still valid MCMC?
○ First approximation: when epsilon is small enough, the accept/reject is ignored
○ Second approximation: using subsampled gradient to approximate true gradient

Transition threshold

Experiments

101

Gaussian Mixture

True and estimated posterior distribution.
Adapted from Welling, Max, and Yee W.
Teh, 2011

Left: variances of stochastic gradient
noise and injected noise. Right:
rejection probability versus step size.
Adapted from Welling, Max, and Yee
W. Teh, 2011

Experiments

102

Logistic Regression

Average log joint probability per data item (left) and
accuracy on test set (right) as functions of the number
of sweeps through the whole dataset. Red dashed
line represents accuracy after 10 iterations. Results
are averaged over 50 runs; blue dotted lines indicate
1 standard deviation. Adapted from Welling, Max, and
Yee W. Teh, 2011

Independent Components Analysis

Amari distance over time for stochastic Langevin dynamics and corrected Langevin dynamics.
Thick line represents the online average. Adapted from Welling, Max, and Yee W. Teh, 2011

Instability index for the 10 independent components computed for stochastic Langevin dynamics
and corrected Langevin dynamics on MEG. Adapted from Welling, Max, and Yee W. Teh, 2011

Recall from SGLD:

Problems with SGLD

● Wasting memory:
○ Many copies of the parameters need to be stored

○ For S number of samples, memory requirements are S times bigger

● Wasting time:
○ Makes predictions using many versions of the model

○ For S number of samples, speed will be S times slower than an ML estimate

103

Bayesian Dark Knowledge - Distillation

104

105

106

Takeaways from SGLD

● Perspective
✫ Bridging optimization and Bayesian learning

● Justification
✫ First approximation: when epsilon is small enough, the accept/reject is ignored

✫ Second approximation: using subsampled gradient to approximate true gradient

● Experiments/Evaluations
✫ Small rejection rate

✫ Fast optimization

✫ Good approximation to MALA

107

Making SGLD better?

● Various angles to consider
○ From modern neural networks

● Variants of SGD are popular (e.g. with momentum, 2nd order approx.) in NN, can we
use it within SGLD?

➢ With momentum: SGHMC

➢ 2nd order approx.: stochastic gradient Fisher scoreing (SGFS)

● SGLD assumes smoothly changing gradients, but popular non-linearity in NN like ReLU
might not be

➢ Use weight clipping like in WGAN?

○ From other MCMC techniques

● SGHMC, and many extensions (see page 2 on the Bayesian Dark Knowledge paper)
108

References

109

Originally Assigned Readings from instructor (href: https://csc2541-f17.github.io/)
Welling, Max, and Yee W. Teh. "Bayesian learning via stochastic gradient Langevin dynamics." Proceedings of the 28th International
Conference on Machine Learning (ICML-11). 2011.

Balan, Anoop Korattikara, et al. "Bayesian dark knowledge." Advances in Neural Information Processing Systems. 2015.

Extensions mentioned -
[SGHMC] Chen, Tianqi, Emily Fox, and Carlos Guestrin. "Stochastic gradient hamiltonian monte carlo." International Conference on Machine
Learning. 2014.

[SGFS] Ahn, Sungjin, Anoop Korattikara, and Max Welling. "Bayesian posterior sampling via stochastic gradient Fisher scoring." arXiv preprint
arXiv:1206.6380 (2012).

[WGAN] Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein gan." arXiv preprint arXiv:1701.07875 (2017).

https://csc2541-f17.github.io/

Thank you!

Q/A

