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Overview

● With Bayesian methods, we obtain a distribution of answers to a question 

rather than a point estimate

● This can help address regularization and model comparison without a held-out 

validation set

○ Compare and choose architectures, regularizers, and other hyperparameters

● Can also compute a distribution over outputs: place error bars on 
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Motivation - Why use Bayesian Neural Nets?



Overview

● Parameters represented by single, fixed 
values (point estimates)

● Conventional approaches to training NNs 
can be interpreted as approximations to 
the full Bayesian method (equivalent to 
MLE or MAP estimation)
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Standard NN vs BNN

Standard Neural Net Bayesian Neural Net

● Parameters represented by distributions
● Introduce a prior distribution on the weights

            and obtain the posterior                    
through Bayesian learning

● Regularization arises naturally through the 
prior 

● Enables principled model comparison
Images from: Blundell, C. et al. Weight Uncertainty in Neural Networks. ICML 2015.



Overview

Squared error (no regularization)
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Conventional Training as Bayesian Approximation

Squared error (+      regularization)

Minimizing: Is Equivalent To:

Maximum likelihood estimation

MAP estimation with a Gaussian prior

where



Overview

● Many problems addressed by Bayesian methods involve integration:

○ Evaluate distribution of network outputs by integrating over weight space
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The Role of Integration in Bayesian Methods

● Compute the evidence for Bayesian model comparison

● These integrals are often intractable, and must be approximated



Overview

● Gaussian approximation (1/2): Allows the integrals to be evaluated analytically

○ Optimization involved in finding the mean of the Gaussian

● Monte Carlo methods (2/2): Draw samples to evaluate the integral directly

● Variational inference (next week): Convert integration into optimization

○ Minimize KL divergence between the posterior and a proposed parametric function
7

Methods of Approximating Integrals

Image from: MacKay, D. Information Theory, Inference, and Learning Algorithms. Cambridge University Press. p. 341. 2003.



Overview

● Understand how to apply Bayesian model comparison to neural networks

● Explore the connection between neural networks and Gaussian Processes

○ Understand the meaning behind the prior distributions imposed over network 

parameters as the first step in Bayesian inference

○ What types of functions do BNNs compute when their weights are drawn from 

certain types of prior distributions?

● Understand how the computations required by the Bayesian approach can be 

performed using Markov Chain Monte Carlo methods

○ Hamiltonian Monte Carlo

○ Stochastic Gradient Langevin Dynamics (SGLD) 8

BNNs - Topics



A Practical Bayesian Framework 
for Backpropagation Networks

Paper by: David J. C. MacKay

Presented by: Paul Vicol, Shane Baccas, George-Alexandru Adam



Overview

● Bayesian methods can be applied at two stages of a data modeling problem:

1. Fitting a specific model to data by inferring its parameters

2. Comparing and ranking alternative models

● Bayesian evidence enables principled comparisons between alternative 

neural network architectures and regularization methods

● Key result: For models well-suited to a problem, Bayesian evidence and 

generalization error are correlated
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Overview



Add regularizing term       to penalize large 
weights for a smoother mapping:

A neural network with 
architecture      and 
parameters       that defines a 
mapping 

Defining a Neural Network Model for Regression
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Dataset

Model

Data Error: Sum of Squared Errors

Obtain a regularized cost function:

Regularization

A Neural Network Model for Regression



● Split data into disjoint training/validation sets
● Optimize network parameters       on training set
● Optimize control parameters like        and       on 

validation set

Motivation for Bayesian Methods

● Many free parameters, including:
○ The architecture
○ The regularization strength
○ The regularizer        (       )

● Need a large val set to achieve a good 
signal to noise ratio

● Cross-validation is computationally 
demanding

● Grid search over many parameters is not 
tractable

DrawbacksCommon method to compare networks
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Motivation for Bayesian Methods



What We Want

● We would like objective criteria to set control parameters and compare 

alternative solutions

● In particular, techniques that do not require creating a held-out test set

○ Critical in situations where data is limited

● We want to use all the data for both:

○ Optimizing the weights     , and

○ Optimizing control parameters     ,     , and
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What We Want



The Difficulty of Model Comparison: Occam’s Razor

● We can’t just choose the model that fits the data best
○ More complex models will always fit better, but fail to generalize

● Should account for Occam’s Razor: balance data fit and model complexity
14

The Difficulty of Model Comparison: Occam’s Razor

Image from: MacKay D., Bayesian Interpolation. Neural Computation 4, 415-447. 1992.



Bayesian Model Comparison

● Bayesian model comparison: determine which class of models       is best 
suited to explain the observed data 

● We rank alternative models       by computing the evidence: 
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● Bayesian evidence embodies Occam's razor naturally
○ Penalizes overly complex models
○ Helps detect poor assumptions in learning models

Bayesian Model Comparison



● Two advantages:
○ We can estimate hyperparameters iteratively using entire data set. 
○ We can provide “well calibrated” confidence intervals around a 

prediction:

● Under the Bayesian regime, we are not interested in the values of the 
weights, instead we make predictions using the marginal likelihood 
function (predictive distribution) whose mean is  

Bayesian Neural Networks

● Retains the same topology of regular Neural Nets, however we assume a 
prior distribution over the weights and we follow an iterative procedure for 
estimating the hyperparameters.
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Bayesian Neural Networks Overview
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Prior distribution over target variables Prior distribution over weights

Likelihood function (assuming iid)

Then 

Which is not Gaussian because the 
function y is a neural network whose 
dependence on w is non-linear 

→ We will build a Gaussian Approximation to the log-posterior.

Posterior



Laplace Approximation

● Replace the posterior by a Gaussian centered at a peak of 
the posterior (a mode)

● The covariance of the Gaussian is small
● Assumes that the posterior distribution      has a global 

maximum

Image from: https://en.wikipedia.org/wiki/Laplace%27s_method



Gaussian Approximation to the Posterior
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● The main idea in the procedure is to find a non-unique mode     of the 
log-posterior (through BP and SGD) and use this mode with Laplace 
approximation to find the Gaussian approximation about that particular 
mode: 

We then find the Hessian: 

Thus by Laplace approximation the posterior Gaussian approximation becomes:



Neural Net Weight Space Symmetry

● If we permute all connections of one neuron with another in the same layer 
(e.g., swap positions of the neurons), the network output is unchanged
○ Because the weighted contributions of neurons are summed (order-invariant).
○ This causes many local minima (see figure on right)
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Neural Net Weight Space Symmetry

Original figures: Left and right by G. A. Adam, center by P. Vicol



Towards the Predictive Distribution

● The predictive distribution is then given by:

● Unfortunately this is still analytically intractable because our hypothesis 

function is a non-linear neural net. So we approximate with its 

first-order Taylor series expansion:                

where

21Where: 

● Now we can approximate the predictive distribution with 

● This gives us:



Learning Hyperparameters Online  

● To learn      and     , the precision parameters over our prior distributions, 

online we need to find marginal likelihood over      and     by integrating over 

the network weights. 
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Where: 

● Which gives us:



● Notice these equations only implicitly define     and    . We must first begin 

with guesses for     and      and we update our guesses using the posterior 

distribution, as new batches of data come in. 

Maximizing Joint Log-Marginal for       and   

● To find maximum likelihood point estimates for α define the eigenvalue equation
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where and

● This implies

where evaluated at



Energy-Based Probabilistic Interpretation

● Using the standard Bayesian framework of likelihood, prior and posterior, we 
define the following probabilities:

Prior

Posterior

Likelihood Prior Likelihood

Posterior



● Probabilistic assumptions on the random variables of interest:

○                                                              where         corresponds to particular          with 

additive Gaussian noise

○                                    the random vector      is Gaussian with mean 0 and 

precision parameter

● This implies:

Bayesian Approach over Architectures
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Prior: 

Likelihood:

Posterior: 

Gaussian Integrals

○ P(T) ~ N(E[T|X=x^(m)], 

1/ß) i.e. the r.v. T

● E[T|X=x^(m)] ≈ y(x^(m), w, A)

○ P(w) ~ N(0, 1/\alpha)



, for

● Finding the most probable value of      for the posterior, i.e.,          is 

equivalent to minimizing the regularized cost function      , defined as 

Finding the Posterior

● The posterior is given by
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But how do we find the parameters      and    ?



For                                we must use Laplace approximation for 

Gaussian integrals

MacKay Bayesian Framework 

By Bayes Theorem: 

We assign a uniform prior to      and      and have 

Now let                                               and    
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Now let: N:= |D|*|dim(t^(m))|    & k = dim(w)
Evaluate integrals directly



Estimating      and     for NNs

● Assume:

○ The posterior probability of      and     consists of well separated islands in parameter 
space each centered around a minimum of 

● Consider       a minimum of      and define the solution         as the ensemble of 
networks A in the neighborhood of       and all symmetric permutations of that 
ensemble. 
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● Posterior probability of solution is:

where 



● Where                       is the Hessian of       evaluated at 

● This approximation works when                     is “large” by C.L.T. 

● Also:
○ Recent paper from Pennington and Bahri (JMLR, 2017) also treats 

Hessian estimation for NNs using Random Matrix Theory

How do we Calculate        ?

● We have expressions for every quantity but       ; because of our assumption, 
we can use Laplace approximation:
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|D|/dim(x^(m))



● It is important to note we do NOT need the posterior of     and     over the entire 
set of possible architectures (this would be computationally infeasible) 

● Instead we wish to compare pre-trained NNs which have found their own  
minimum and rank them in some objective manner 

Comparing Models

● To assign preference to alternative architectures and regularizers, we 
evaluate the evidence                            of the solutions we found by 
marginalizing out     and    :



Evidence and Generalization Error

● Evidence and generalization error are correlated

● But evidence is not always a good predictor of generalization error

○ Validation error is noisy, and requires a large held-out dataset

○ If two models yield identical regression results, their gen errors are the same, but 

evidence may differ due to model complexity (penalized by the Occam factor)

31

Evidence and Generalization Error



Model Complexity and Generalization Error

Train Error Test Error

Image from: Hastie, T. et al., Elements of 
Statistical Learning. Springer. p. 38. 2013.



Evidence - Occam Hill

33Evidence vs Num Hidden Units

Occam hill

Evidence - Occam Hill

Occam factor



Comparing Models

● The second last slide showed us 
that using training error on its own 
will lead to overfitting and poor 
generalization

● The red circled region shows 
models with good generalization 
but low evidence

● This contradicts what we thought 
Bayesian model comparison does

● We must be missing something!

Test Error vs Log Evidence



Failure as an Opportunity to Learn

● What if the evidence is low, but generalization error is good (low)?

○ i.e., we have poor correlation between evidence and gen error

● Then the model likely does not match the real world

● Learn from the failure: Check and evaluate model assumptions, try new 

models until one achieves better fit with the data

○ This is a benefit of using Bayesian methods; from gen error, can’t discover the 

inconsistency between the model and data

35

Failure as an Opportunity to Learn



Inconsistent Prior

● Our loss function is standard, so let’s look at our prior more closely

● Suppose we rescale the inputs ● Our prior is inconsistent
Then we could rescale the weights in the first 
layer and end up with the same mapping

Net B does the same thing yet the prior 
penalizes Net B more than Net A

Original figure 
by G. A. Adam 



Adjusting the Prior

● The previous prior assumed dependence in the scale of the weights between 
layers

● Let’s use a prior that has 
independent regularizing 
constants for each layer:

● Notice how the bottom left 
region of high evidence but 
poor generalization no 
longer exists



Overview

● Variance of the Gaussian prior for the weights and biases is a hyperparameter

○ Allows the model to adapt to the degree of smoothness indicated by the data

● Improved by using several variance hyperparameters, one for each type of 

parameter (input-to-hidden weights, hidden biases, and output weights/biases)

● This emphasizes the advantages of hierarchical models

● Makes sense: Network inputs and outputs are different quantities with different 

scales; using a single variance hyperparameter depends on arbitrary choice of 

measurement units.
38

Summary from Neal



Conclusion

● Bayesian evidence is in fact a good predictor of generalization ability

● Combined with generalization error, it can help us determine if we are using 

an inconsistent regularizer and change our worldview

● Evidence is maximized for neural nets with reasonable numbers of hidden 

units

● Computational difficulty arises in calculating the Hessian, its inverse, and 

determinant

● This framework is also applicable to classification problems

○ Error landscape would look totally different since we would be using different loss functions
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Priors for Infinite Networks

By: Radford M. Neal

Chapter 2 of Bayesian Learning for Neural Networks

Presented by: Soon Chee Loong

Based on: 



Overview

● The weights of a network determine the function computed by the network

● In a BNN, the weights are drawn from a probability distribution; intuitively, we 

can interpret the BNN as representing a distribution over functions

● The first step in Bayesian inference is the specification of a prior
○ e.g., a prior over weights, 

● Given a prior over the weights, what is the prior over computed functions?

● Connection between bayesian neural networks and Gaussian Processes

42

Distributions over Weights and Functions



Overview

● How do we decide priors for neural networks? 

● A single hidden layer neural network with infinite hidden units                       

converges to a Gaussian Process. 

● A single hidden layer neural network with infinite hidden units                       

approaches a limiting distribution. 

● The choice of hidden function activation influences the type of functions 

sampled from the prior.  

● Not covered from Radford’s Chapter 2 Thesis: Hierarchical Models

43

Overview



Overview

● Prior represents our beliefs about the problem. 
○ Recap: Coin toss problem, heads and tails with 50% probability makes sense to us. 

■ Solve problem due to  M.L.E. with coin toss by introducing uniform priors. 
● Neural Networks

○ priors over weights/biases has no obvious connection to input.  

● The use of infinite networks makes sense from the standpoint of prior beliefs

○ We usually don’t believe that the function we want to learn can be perfectly 

captured by a finite network. 

● Properties of gaussian priors for infinite networks can be found analytically. 
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Motivation: Selecting Priors



Overview

● Bayesian Occam Razor: Bayesian approach:
○  can increase model parameters to infinity without overfitting.

● In practice, limited by computational resources (memory, time)

● NOT restricted based on size of training set.

● Wouldn’t we overfit? No, if we regularize it properly.  
○ Analogous to Neural Networks: 

■ “Make network as big as possible” 
■ “Then, regularize using weight decay, dropout.”  (Jimmy Ba, ECE521 2017 Lecture)

● What should we increase in Neural Networks to Infinity? 
45

Motivation: Bigger is Better



Overview

● Universal Approximation Theorem: 
○ can approximate any continuous function with a neural network with 1 hidden layer.

● Hence, focus on extending hidden layer to infinite number of hidden units.  

● Assumption: Computationally feasible to produce mathematically correct 

results for infinite hidden units. 

46

Universal Approximation Theorem. 

- Online Open Access Textbooks, 9.3 Neural Network Models

https://www.otexts.org/fpp/9/3
https://www.otexts.org/fpp/9/3


Overview

● Since no obvious connection, what priors do we use?

● Gaussian with zero mean is standard. 

● Historically by David Mackay, 
○ Gaussian with zero mean has worked well for his work.

○ Minimize standard deviation of priors as a form of regularization. 
■ Similar to weight decay for neural networks.  

47

What Priors to Use

- Natural Resource Biometrics, NR3110

http://oak.snr.missouri.edu/nr3110/topics/distribution.php
http://oak.snr.missouri.edu/nr3110/


Overview

● Consider a Bayesian Neural Network with a single hidden layer:
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Infinite Networks → Gaussian Processes

.

.

.I

H

O

input-to-hidden hidden-to-output

● Examine the prior 
distribution on the output 
value for a fixed input 

We want to find

Original figure by P. Vicol



Overview

● Behavior of output 

● Total Variance 

○ Central Limit Theorem

49

Output Variance Limit Behavior Without Regularization

Need to get rid of dependence on H

- Bishop, Pattern Recognition and Machine Learning



Overview

● Reduce initialization variance as form of regularization 
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Output Variance Limit Behavior With Regularization



Overview
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Output Variance With Regularization

Output variance finite!



Overview
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Output Variance With Regularization

Proof works for any

zero mean, finite variance 

prior distribution.

Output variance finite!



Overview

● Similarly, (mathematical proof for Prior Joint Distribution) 

● Gaussian Priors converge to Gaussian Process                                             

as number of hidden units increases. 

53

Priors Converge to Gaussian Process



Overview
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Functions Drawn Approaches Limiting Distribution
(From CSC2541 2017: Lecture 2 pg. 36 of 55)



Overview
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Functions Drawn From Prior Distribution
 With Step(z) Hidden Activation
Approaches Limiting Distribution
H = 300 H = 10000

Converges

Converges Converges

Converges

- Radford Neal, PhD Thesis, Chapter 2



Overview

● How does Hidden Unit Activation affect output function sampled?
○ h(z) = sign(z)

○ h(z) = tanh(z) 
● Gaussian Prior with zero mean. 

● Priors properties are determined by the covariance function. 

○ Smooth

○ Fractional Brownian 

○ Brownian

56

Priors to Brownian or Smooth Function



Overview
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Priors that Lead to Brownian Functions

● Let input-to-hidden weights and hidden biases have Gaussian distributions

0.5

● Step activations

● The function is built up of small, 

independent, non-differentiable 

steps contributed by hidden units. 

● Brownian

.

.

.

1

0.5

0.5
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1

1

-0.8

0.2

0.7Original figure by P. Vicol



Overview
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Priors that Lead to Smooth Functions

● Let input-to-hidden weights and hidden biases have Gaussian distributions

0.5

● Tanh activations

● The function is built up of small, 

independent, differentiable tanh 

contributed by hidden units

● Smooth

.
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.
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Overview

Gaussian priors, step()  hidden units
59

Priors that Lead to Smooth and Brownian Functions

Gaussian priors, tanh() hidden units
- Radford Neal, PhD Thesis, Chapter 2



Overview
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Tanh(): Smooth Converges to Brownian 
as the prior over the mean increases to infinity

Gaussian priors,            hidden units
- Radford Neal, PhD Thesis, Chapter 2



Overview

● Behavior is based on Covariance Function

● Re-write covariance function in terms of the differences. 
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Priors to Brownian or Smooth Function



Overview

● Priors properties are determined by the covariance function. 
○ Smooth

■

○ Fractional Brownian

■

○ Brownian

■
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Prior over Function Covariance Properties 

- Radford Neal, PhD Thesis, Chapter 2



Overview
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Non Gaussian Prior (Cauchy) 
with Step Hidden Activation

Gaussian Prior with Step()
Non-Gaussian Prior 

(Cauchy) with Step()
Large jumps from 

single hidden unit.

- Radford Neal, PhD Thesis, Chapter 2



Overview

● Can solve many problems not solvable by 

GPs: e.g., representation learning
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GPs vs NNs

Neural Networks Gaussian Processes
● Simple matrix operations on the 

covariance matrix of the GP
● Optimizing parameters of a network

● When would we use NNs vs GPs?

● GPs are just “smoothing devices” (MacKay, 2003)
○ Are NNs over-hyped, or are GPs underestimated? (MacKay says both.)

● GPs are easy to implement and use - few 

parameters must be specified by hand

● Inverting an NxN matrix is expensive - 

Can’t scale to large datasets (N > 1000)



Hamiltonian Monte Carlo

Based on: MCMC using Hamiltonian Dynamics by 
Radford Neal

Presented by:  Tristan Aumentado-Armstrong, Guodong Zhang, Chris Cremer 



Markov Chain Monte Carlo (MCMC) I

● Recall: in Bayesian analysis, we often desire integrals like

(Posterior Predictive Dist.)

 (Expectation of y=f(x|θ))

66

● But how can we actually evaluate these integrals when θ is very high 

dimensional? Use Markov Chain Monte Carlo (MCMC), which is much less 

affected by dimensionality.



Markov Chain Monte Carlo (MCMC) II

● Monte Carlo is a way of performing this integration, by transforming the 

problem in the following way:

67

        where θi is distributed according to the posterior for the parameters, P(θ|D)

● This transforms our integral into a sampling problem, so that we now just 

need a way to sample from the posterior 



The Metropolis-Hastings (MH) Algorithm I

● MH is an MCMC algorithm for sampling from the posterior P(θ|D)

● Intuition: Run a Markov chain with stationary distribution P(θ|D)  

● Algorithm (Assume: Q(θ) ᵙ P(θ|D))

○ Start from initial state θ0

○ Iterate i = 1 to n:

■ Propose: 

■ Acceptance Probability

68



The Metropolis-Hastings (MH) Algorithm II

● Given enough time, MH converges to sampling from 

the stationary distribution 
○ At this point, states are samples from the posterior (as desired)

● Common proposal choice: Random Walk MH 

○ The proposal perturbs the current state (e.g. Gaussian noise) 
and is symmetric

○ The new proposed state is accepted/rejected based on how 
likely the parameters are according to the posterior 

69

Murray, MCMC Slides, Machine 
Learning Summer School 2009



The Metropolis-Hastings (MH) Algorithm III

● This accept-reject step ensures that the state update (transition) satisfies the 

equations of detailed balance
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● Such chains are reversible, which is desirable for MCMC algorithms

○ Reversibility can be used to show the MCMC updates don’t alter Q 

○ This is sufficient for the chain’s stationary distribution to exist and, in this case, 

equal our posterior by construction

       where              is the state transition probability 

    

        



The Metropolis-Hastings (MH) Algorithm IV

● Choosing a proposal distribution: e.g. 
○ Balance exploration (reach areas with support) & visiting high probability areas more

○ Control the random walk step size with ṓ
■ Too large: too many rejections 
■ Too small: explores the space too slowly 

● Drawbacks of the Random Walk MH Algorithm
○ The algorithm may find it very difficult to move long distances in parameter space

■ Random walks are not very efficient explorers

○ If ṓ is too large or small, then the samples will be too dependent (lower effective sample size)

● We want a way to move larger distances, yet still have a decent chance of 

acceptance - Idea: prefer moving along level sets of an energy related to Q
71
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Hamiltonian Monte Carlo - Motivation

● For MCMC, the distribution we wish to sample can be related to a 
potential energy function via the concept of canonical distribution from 
statistical mechanics 

● We can draw samples from canonical distribution using random walk 
Metropolis (guess-and-check). But it cannot produce distant proposals 
with high acceptance probability.

Canonical distribution

http://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.html


Hamiltonian Monte Carlo - Motivation

● The key here is to exploit additional information to guide us through the 
neighborhood with high target probability.

Gradient !!!

image credit: A Conceptual introduction to Hamiltonian Monte Carlo



Hamiltonian Monte Carlo - Motivation

● Following along the gradient would pulls us towards the mode of the 
target density. We lose the chance to explore new and unexplored 
areas.

image credit: A Conceptual introduction to Hamiltonian Monte Carlo

Momentum !!!



Hamiltonian energy

● Introduce the momentum    (where   is variable of interest, say position)

● We can now lift up the target distribution onto a joint distribution 

● By the definition of canonical distribution, the expanded system defines a 
Hamiltonian energy that decomposes into a potential energy and kinetic 
energy.

Note: for convenience, I just use one-dimensional notations in my slide.



Hamiltonian dynamics

● Hamiltonian dynamics describe how kinetic energy is converted to 
potential energy (and vice versa) as a particle moves throughout a system 
in time. 

● This description is implemented quantitatively via a set of differential 
equations known as the Hamilton’s equations:

● These equations define a mapping     from   to 



77

Property - Reversibility

Property 1: For the mapping     from          to             , we can find 
inverse mapping by first negating    , applying    , and negating    again.

negatenegate

Note: Detailed balance requires each transition is reversible.



Property - Hamiltonian Conservation 

Note: In practice, Hamiltonian is approximately invariant.

Property 2: Hamiltonian H doesn’t have a functional dependence on 
time. It’s invariant over time. 



Property - Volume Preservation 

Property 3: In Hamiltonian dynamics, any contraction or expansion in 
position space must be compensated by a respective expansion or 
compression in momentum space.
 

Sufficient and necessary condition: the determinant of Jacobian 
matrix of the mapping having absolute value one

 A B



Leave target distribution invariant 

● Hamiltonian Conservation

● Reversibility

● Volume Preservation



Discretizing Hamilton’s equations 

● For computer implementation, Hamilton’s equations must be approximated 
by discretizing time, using some small stepsize,  .

● The best known way to approximate the solution is Euler’s method

● Euler’s method is not volume preserving and not 
reversible.

image credit: MCMC using Hamiltonian dynamics



Leapfrog method

Note: each step is “shear” transformation which is volume 
preservation. 

https://en.wikipedia.org/wiki/Shear_mapping



● In practice, using finite stepsizes    will not preserve the Hamiltonian 
exactly and will introduce bias in the simulation.

● HMC cancels these effects exactly by adding a Metropolis 
accept/reject stage, after n leapfrog steps, the proposed state will be 
accepted with the probability                          , defined as

83

Accept / Reject

image credit: MCMC using Hamiltonian dynamics
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Summary

● Sample momentum from its canonical distribution

● Perform n leapfrog steps and obtain the proposed state

● Accept/reject the proposed state



MH vs HMC

● Initialize x 

● For s=1,2...N:

○ Sample momentum
v = N(0,M)

○ Simulate Hamiltonian dynamics
 x’,v’ = LF(x,v)

○ Accept sample with probability:
min(1, p(x’,v’)/p(x,v))

○ If accept:
x = x’

○ Else:
x = x

● Initialize x 

● For s=1,2...N:

○ Sample from proposal
 x’ ~ q(x’|x)

○ Accept sample with probability:
min(1, p(x’)q(x|x’)/p(x)q(x’|x))

○ If accept:
x = x’

○ Else:
x = x

Metropolis-Hastings Hamiltonian Monte Carlo



Visualization

● MH: https://chi-feng.github.io/mcmc-demo/app.html#RandomWalkMH,banana

● HMC: https://chi-feng.github.io/mcmc-demo/app.html#HamiltonianMC,banana 
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https://chi-feng.github.io/mcmc-demo/app.html#RandomWalkMH,banana
https://chi-feng.github.io/mcmc-demo/app.html#HamiltonianMC,banana


HMC - Bayesian Perspective

● Goal: Sample x ~ p(x)
○ Construct Markov chain p(x’|x)

○ Want: 
■ High acceptance probability: p(x’)/p(x)      (more efficient, less rejections)

■ Distant proposals: x’ far from x                  (better mixing)

● Introduce auxiliary variable v and integrate it out 
○ x ~ p(x) = /int p(x,v)    (sampling momentum)

○ Chain becomes: p(x’,v’|x,v) 
○ Acceptance becomes: p(x’,v’)/p(x,v)

■ This ratio can stay high while x’ can be very different than x

■ Hamiltonian dynamics achieves the desired properties
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How do we know we’re sampling the correct distribution?

● Detailed Balance (sufficient but not necessary)
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Metropolis-Hastings Hamiltonian Monte Carlo

Why:



HMC for BNNs

● Radford Neal Thesis - Chapter 3
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   Proposal      Acceptance
Solid:      .1            76%
Dotted:   .3   39%
Dashed: .9     4%

HMC       .3             87%

Exploration Experiment

Y-axis: square root of the 
average squared magnitude 
of the hidden-output weights

X-axis: super-transitions 
(2000 steps)



Data Sub-Sampling in MCMC

● Problem: 

○ Computing likelihood for MH acceptance step requires the whole dataset

○ For HMC, also need gradient of whole dataset

● Stochastic Gradient HMC (2014)

● Towards scaling up Markov chain Monte Carlo: an adaptive subsampling approach (2014)

● Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget (2014)
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Stochastic Gradient Langevin Dynamics

By: Max Welling, Yee Whye Teh
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Bayesian Dark Knowledge
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Overview

● Bayesian learning for small mini-batches 
✫ Bridging optimization and Bayesian learning

■ Recall Lecture 1: learning MAP versus learning the posterior distribution

● Simple framework that transitions from optimization to posterior sampling

● 2 perspectives on the algorithm
○ Adding Gaussian noise to Stochastic Gradient Descent (SGD) updates

○ Mini-batch Langevin Dynamics (LD)

● This paper is not 
○ just proposing a new optimizer
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● Langevin Dynamics is used for the proposal step in Metropolis-adjusted Langevin Algorithm(MALA)
○ MALA is a technique of MCMC (proper posterior sampling technique)

● Only a slight modification of Full Batch GD
○ Injects Gaussian noise to parameter updates 

The reject/accept step from the classic MALA framework is dropped here, because when epsilon is small 
enough, the acceptance rate approaches 1.

Langevin Dynamics
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Full Batch GD Langevin Dynamics

Bayesian Learning



Langevin Dynamics
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● MALA: animation
○ Href: https://chi-feng.github.io/mcmc-demo/app.html#MALA,banana
○ Why is having a small stepsize important in this paper? (try it!)

■ Notice how when stepsize is reduced, the acceptance rate goes up!

https://chi-feng.github.io/mcmc-demo/app.html#MALA,banana


SGD
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Full Batch GD

In SGD, at each iteration t, update is performed based on a subset of data, 

● approximating the true gradient over the whole dataset
● N, and n can differ by orders of magnitude (e.g. 128 vs 1,000,000)

○ In practice, optimization of NN (non-Bayesian) appears to take a long time (large number of 
iterations), but it usually translates to <50 passes over the full dataset (epoch).

○ But 50 samples for MCMC is definitely not enough

Mini Batch GD (SGD)

Optimization



SGLD
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Full Batch GD Langevin Dynamics

Mini Batch GD (SGD) SGLD



Visually speaking…
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The figures are actually animations in the presentation.
Please visit: https://github.com/wangkua1/SGLD-presentation-supp/tree/master
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Approximately recovers LD Let’s rewrite SGLD

Justify SGLD
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● What approximation is SGLD making to MALA, and why is it still valid MCMC?
○ First approximation: when epsilon is small enough, the accept/reject is ignored 
○ Second approximation: using subsampled gradient to approximate true gradient 



Transition threshold 

Experiments
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Gaussian Mixture

True and estimated posterior distribution. 
Adapted from Welling, Max, and Yee W. 
Teh, 2011

Left: variances of stochastic gradient 
noise and injected noise. Right: 
rejection probability versus step size. 
Adapted from Welling, Max, and Yee 
W. Teh, 2011



Experiments
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Logistic Regression

Average log joint probability per data item (left) and 
accuracy on test set (right) as functions of the number 
of sweeps through the whole dataset. Red dashed 
line represents accuracy after 10 iterations. Results 
are averaged over 50 runs; blue dotted lines indicate 
1 standard deviation. Adapted from Welling, Max, and 
Yee W. Teh, 2011

Independent Components Analysis

Amari distance over time for stochastic Langevin dynamics and corrected Langevin dynamics. 
Thick line represents the online average. Adapted from Welling, Max, and Yee W. Teh, 2011

Instability index for the 10 independent components computed for stochastic Langevin dynamics 
and corrected Langevin dynamics on MEG. Adapted from Welling, Max, and Yee W. Teh, 2011



Recall from SGLD:

Problems with SGLD

● Wasting memory:
○ Many copies of the parameters need to be stored

○ For S number of samples, memory requirements are S times bigger

● Wasting time:
○ Makes predictions using many versions of the model

○ For S number of samples, speed will be S times slower than an ML estimate
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Bayesian Dark Knowledge - Distillation
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Takeaways from SGLD

● Perspective
✫ Bridging optimization and Bayesian learning

● Justification
✫ First approximation: when epsilon is small enough, the accept/reject is ignored 

✫ Second approximation: using subsampled gradient to approximate true gradient 

● Experiments/Evaluations
✫ Small rejection rate

✫ Fast optimization

✫ Good approximation to MALA
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Making SGLD better?

● Various angles to consider
○ From modern neural networks

● Variants of SGD are popular (e.g. with momentum, 2nd order approx.) in NN, can we 
use it within SGLD?

➢ With momentum: SGHMC

➢ 2nd order approx.: stochastic gradient Fisher scoreing (SGFS)

● SGLD assumes smoothly changing gradients, but popular non-linearity in NN like ReLU 
might not be

➢ Use weight clipping like in WGAN?

○ From other MCMC techniques

● SGHMC, and many extensions (see page 2 on the Bayesian Dark Knowledge paper)
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