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Adminis-Trivia

Did everyone get my e-mail last week?

If not, let me know.
You can find the announcement on Blackboard.

Sign up on Piazza.

Is everyone signed up for a presentation slot?

Form project groups of 3–5. If you don’t know people, try posting to
Piazza.
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Advice on Readings

4–6 readings per week, many are fairly mathematical
They get lighter later in the term.
Don’t worry about learning every detail. Try to understand the main
ideas so you know when you should refer to them.

What problem are they trying to solve? What is their contribution?
How does it relate to the other papers?
What evidence do they present? Is it convincing?

Reading mathematical material
You’ll get to use software packages, so no need to go through
line-by-line.
What assumptions are they making, and how are those used?
What is the main insight?
Formulas: if you change one variable, how do other things vary?
What guarantees do they obtain? How do those relate to the other
algorithms we cover?

Don’t let it become a chore. I chose readings where you still get
something from them even if you don’t absorb every detail.
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This Lecture

Linear regression and smoothing splines

Bayesian linear regression

“Bayesian Occam’s Razor”

Gaussian processes

We’ll put off the Automatic Statistician for later
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Function Approximation

Many machine learning tasks can be viewed as function
approximation, e.g.

object recognition (image → category)
speech recognition (waveform → text)
machine translation (French → English)
generative modeling (noise → image)
reinforcement learning (state → value, or state → action)

In the last few years, neural nets have revolutionized all of these
domains, since they’re really good function approximators

Much of this class will focus on being Bayesian about function
approximation.
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Review: Linear Regression

Probably the simplest function approximator is linear regression. This
is a useful starting point since we can solve and analyze it analytically.

Given a training set of inputs and targets {(x(i), t(i))}Ni=1

Linear model:
y = w>x + b

Squared error loss:

L(y , t) =
1

2
(t − y)2

Solution 1: solve analytically by setting gradient to 0

w = (X>X)−1X>t

Solution 2: solve approximately using gradient descent

w← w − αX>(y − t)

Roger Grosse CSC2541 Lecture 2 Bayesian Occam’s Razor and Gaussian Processes 6 / 55



Nonlinear Regression: Basis Functions

We can model a function as linear in a set of basis functions (i.e. feature mapping):

y = w>φ(x)

E.g., we can fit a degree-k polynomial using the mapping

φ(x) = (1, x , x2, . . . , xk).

Exactly the same algorithms/formulas as ordinary linear regression: just pretend
φ(x) are the inputs!

Best-fitting cubic polynomial:

x

t

M = 3

0 1

−1

0

1

— Bishop, Pattern Recognition and Machine Learning

Before 2012, feature engineering was the hardest part of building many AI systems.
Now it’s done automatically with neural nets.
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Nonlinear Regression: Smoothing Splines

An alternative approach to nonlinear regression: fit an arbitrary
function, but encourage it to be smooth.

This is called a smoothing spline.

E(f , λ) =
N∑
i=1

(t(i) − f (x (i)))2

︸ ︷︷ ︸
mean squared error

+λ

∫
(f ′′(z))2 dz︸ ︷︷ ︸
regularizer

What happens for λ = 0? λ =∞?

Even though f is unconstrained, it turns out the optimal f can be
expressed as a linear combination of (data-dependent) basis functions

I.e., algorithmically, it’s just linear regression! (minus some numerical
issues that we’ll ignore)
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Nonlinear Regression: Smoothing Splines

Mathematically, we express f as a linear combination of basis functions:

f (x) =
∑
i

wiφi (x) y = f (x) = Φw

Squared error term (just like in linear regression):

‖t−Φw‖2

Regularizer: ∫
(f ′′(z))2 dz =

∫ (∑
i

wiφi (z)

)2

dz

=

∫ ∑
i

∑
j

wiwj φ
′′
i (z)φ′′j (z) dz

=
∑
i

∑
j

wiwj

∫
φ′′i (z)φ′′j (z) dz︸ ︷︷ ︸

=Ωij

= w>Ωw
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Nonlinear Regression: Smoothing Splines

Full cost function:

E(w, λ) = ‖t−Φw‖2 + λw>Ωw

Optimal solution (derived by setting gradient to zero):

w = (Φ>Φ + λΩ)−1Φ>t
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Foreshadowing
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Linear Regression as Maximum Likelihood

We can give linear regression a probabilistic interpretation by assuming a Gaussian
noise model:

t | x ∼ N (w>x + b, σ2)

Linear regression is just maximum likelihood under this model:

1

N

N∑
i=1

log p(t(i) | x(i); w, b) =
1

N

N∑
i=1

logN (t(i); w>x + b, σ2)

=
1

N

N∑
i=1

log

[
1√
2πσ

exp

(
− (t(i) − w>x− b)2

2σ2

)]

= const− 1

2Nσ2

N∑
i=1

(t(i) − w>x− b)2
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Bayesian Linear Regression

Bayesian linear regression considers various plausible explanations for
how the data were generated.

It makes predictions using all possible regression weights, weighted by
their posterior probability.
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Bayesian Linear Regression

Leave out the bias for simplicity

Prior distribution: a broad, spherical (multivariate) Gaussian centered at
zero:

w ∼ N (0, ν2I)

Likelihood: same as in the maximum likelihood formulation:

t | x,w ∼ N (w>x, σ2)

Posterior:

w | D ∼ N (µ,Σ)

µ = σ−2ΣX>t

Σ−1 = ν−2I + σ−2X>X

Compare with linear regression formula:

w = (X>X)−1X>t
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Bayesian Linear Regression

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

We can turn this into nonlinear regression using basis functions.

E.g., Gaussian basis functions

φj(x) = exp

(
−

(x − µj)2

2s2

)

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

Functions sampled from the posterior:

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

Posterior predictive distribution:

p(t | x,D) =

∫
p(t | x ,w)p(w | D) dw

= N (t |µ>x, σ2
pred(x))

σ2
pred(x) = σ2 + x>Σx,

where µ and Σ are the posterior mean and covariance of Σ.
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Bayesian Linear Regression

Posterior predictive distribution:

— Bishop, Pattern Recognition and Machine Learning
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Foreshadowing
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Foreshadowing
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Occam’s Razor

Data modeling process according to MacKay:
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Occam’s Razor

Occam’s Razor: “Entities should not be multiplied beyond necessity.”

Named after the 14th century British theologian William of Occam

Huge number of attempts to formalize mathematically

See Domingos, 1999, “The role of Occam’s Razor in knowledge
discovery” for a skeptical overview.
https://homes.cs.washington.edu/~pedrod/papers/dmkd99.pdf

Common misinterpretation: your prior should favor simple
explanations
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Occam’s Razor

Suppose you have a finite set of models, or hypotheses {Hi}Mi=1

(e.g. polynomials of different degrees)

Posterior inference over models (Bayes’ Rule):

p(Hi | D) ∝ p(Hi )︸ ︷︷ ︸
prior

p(D |Hi )︸ ︷︷ ︸
evidence

Which of these terms do you think is more important?

The evidence is also called marginal likelihood since it requires
marginalizing out the parameters:

p(D |Hi ) =

∫
p(w |Hi ) p(D |w,Hi )dw

If we’re comparing a handful of hypotheses, p(Hi ) isn’t very
important, so we can compare them based on marginal likelihood.
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Occam’s Razor

Suppose M1, M2, and M3 denote a linear, quadratic, and cubic model.

M3 is capable of explaning more datasets than M1.

But its distribution over D must integrate to 1, so it must assign
lower probability to ones it can explain.

— Bishop, Pattern Recognition and Machine Learning
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Occam’s Razor

How does the evidence (or marginal likelihood) penalize complex
models?

Approximating the integral:

p(D |Hi ) =

∫
p(D |w,Hi ) p(w |Hi )

' p(D |wMAP,Hi )︸ ︷︷ ︸
best-fit likelihood

p(wMAP |Hi ) ∆w︸ ︷︷ ︸
Occam factor
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Occam’s Razor

Multivariate case:

p(D |Hi ) ' p(D |wMAP,Hi )︸ ︷︷ ︸
best-fit likelihood

p(wMAP |Hi ) |A|−1/2︸ ︷︷ ︸
Occam factor

,

where A = ∇2
w log p(D |w,Hi )

The determinant appears because we’re
taking the volume.

The more parameters in the model, the
higher dimensional the parameter space,
and the faster the volume decays.

— Bishop, Pattern Recognition and Machine
Learning
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Occam’s Razor

Analyzing the asymptotic behavior:

A = ∇2
w log p(D |w,Hi )

=
N∑
j=1

∇2
w log p(yi | xi ,w,Hi )︸ ︷︷ ︸

,Ai

≈ N E[Ai ]

log Occam factor = log p(wMAP |Hi ) + log |A|−1/2

≈ log p(wMAP |Hi ) + log |N E[Ai ]|−1/2

= log p(wMAP |Hi )−
1

2
log |E[Ai ]| −

D logN

2

= const− D logN

2

Bayesian Information Criterion (BIC): penalize the complexity of your model by
1
2
D logN.
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Occam’s Razor

Summary

p(Hi | D) ∝ p(Hi ) p(D |Hi )

p(D |Hi ) ' p(D |wMAP,Hi ) p(wMAP |Hi ) |A|−1/2

Asymptotically, with lots of data, this behaves like

log p(D |Hi ) = log p(D |wMAP,Hi )−
1

2
D logN.

Occam’s Razor is about integration, not priors (over hypotheses).
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Bayesian Interpolation

So all we need to do is count parameters? Not so fast!

Let’s consider the Bayesian analogue of smoothing splines, which
MacKay refers to as Bayesian interpolation.
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Bayesian Interpolation

Recall the smoothing spline objective. How many parameters?

E(f , λ) =
N∑
i=1

(t(i) − f (x (i)))2

︸ ︷︷ ︸
mean squared error

+λ

∫
(f ′′(z))2 dz︸ ︷︷ ︸
regularizer

Recall we can convert it to basis function regression with one basis
function per training example.

So we have N parameters, and hence a log Occam factor ≈ 1
2N logN?

You would never prefer this over a constant function!
Fortunately, this is not what happens.

For computational convenience, we could choose some other set of
basis functions (e.g. polynomials).
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Bayesian Interpolation

To define a Bayesian analogue of smoothing splines, let’s convert it to
a Bayesian basis function regression problem.

The likelihood is easy:

p(D |w) =
N∏
i=1

N (yi |w>φ(xi ), σ
2)

We’d like a prior which favors smoother functions:

p(w) ∝ exp

(
−λ

2

∫
(f ′′(z))2 dz

)
= exp

(
−λ

2
w>Ωw

)
.

Note: this is a zero-mean Gaussian.
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Bayesian Interpolation

Posterior distribution and posterior predictive distribution (special
case of Bayesian linear regression)

w | D ∼ N (µ,Σ)

µ = σ−2ΣX>t

Σ−1 = λΩ + σ−2X>X

p(t | x,D) = σ2 + x>Σx

Optimize the hyperparameters σ and λ by maximizing the evidence
(marginal likelihood).

This is known as the evidence approximation, or type 2 maximum
likelihood.
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Bayesian Interpolation

This makes reasonable predictions:
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Bayesian Interpolation

Behavior w/ spherical prior as we add more basis functions:

— Rasmussen and Ghahramani, “Occam’s Razor”
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Bayesian Interpolation

Behavior w/ smoothness prior as we add more basis functions:

— Rasmussen and Ghahramani, “Occam’s Razor”
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Towards Gaussian Processes

Splines stop getting more complex as you add more basis functions.

Bayesian Occam’s Razor penalizes the complexity of the distribution
over functions, not the number of parameters.

Maybe we can fit infinitely many parameters!

Rasmussen and Ghahramani (2001): in the infinite limit, the
distribution over functions approaches a Gaussian process.
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Towards Gaussian Processes

Gaussian Processes are distributions over functions.

They’re actually a simpler and more intuitive way to think about
regression, once you’re used to them.

— GPML
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Towards Gaussian Processes

A Bayesian linear regression model defines a distribution over
functions:

f (x) = w>φ(x)

Here, w is sampled from the prior N (µw,Σw).

Let f = (f1, . . . , fN) denote the vector of function values at
(x1, . . . , xN).

The distribution of f is a Gaussian with

E[fi ] = µ>wφ(x)

Cov(fi , fj) = φ(xi )
>Σwφ(xj)

In vectorized form, f ∼ N (µf ,Σf) with

µf = E[f] = Φµw

Σf = Cov(f) = ΦΣwΦ>
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Towards Gaussian Processes

Recall that in Bayesian linear regression, we assume noisy Gaussian
observations of the underlying function.

yi ∼ N (fi , σ
2) = N (w>φ(xi ), σ

2).

The observations y are jointly Gaussian, just like f.

E[yi ] = E[f (xi )]

Cov(yi , yj) =

{
Var(f (xi )) + σ2 if i = j

Cov(f (xi ), f (xj)) if i 6= j

In vectorized form, y ∼ N (µy,Σy), with

µy = µf

Σy = Σf + σ2I
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Towards Gaussian Processes

Bayesian linear regression is just computing the conditional
distribution in a multivariate Gaussian!

Let y and y′ denote the observables at the training and test data.

They are jointly Gaussian:(
y
y′

)
∼ N

((
µy

µy′

)
,

(
Σyy Σyy′

Σy′y Σy′y′

))
.

The predictive distribution is a special case of the conditioning
formula for a multivariate Gaussian:

y′ | y ∼ N (µy′|y,Σy′|y)

µy′|y = µy′ + Σy′yΣ−1
yy (y − µy)

Σy′|y = Σy′y′ −Σy′yΣ−1
yy Σyy′

We’re implicitly marginalizing out w!
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Towards Gaussian Processes

The marginal likelihood is just the PDF of a multivariate Gaussian:

p(y |X) = N (y;µy,Σy)

=
1

(2π)d/2|Σy|1/2
exp

(
−1

2
(y − µy)>Σ−1

y (y − µy)

)
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Towards Gaussian Processes

To summarize:

µf = Φµw

Σf = ΦΣwΦ>

µy = µf

Σy = Σf + σ2I

µy′|y = µy′ + Σy′yΣ−1
yy (y − µy)

Σy′|y = Σy′y′ −Σy′yΣ−1
yy Σyy′

p(y |X) = N (y;µy,Σy)

After defining µf and Σf , we can forget about w and x!

What if we just let µf and Σf be anything?
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Gaussian Processes

When I say let µf and Σf be anything, I mean let them have an
arbitrary functional dependence on the inputs.

We need to specify

a mean function E[f (xi )] = µ(xi )
a covariance function called a kernel function:
Cov(f (xi ), f (xj)) = k(xi , xj)

Let KX denote the kernel matrix for points X. This is a matrix whose
(i , j) entry is k(xi , xj).

We require that KX be positive semidefinite for any X. Other than
that, µ and k can be arbitrary.
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Gaussian Processes

We’ve just defined a distribution over function values at an arbitrary finite set of
points.

This can be extended to a distribution over functions using a kind of black magic
called the Kolmogorov Extension Theorem. This distribution over functions is
called a Gaussian process (GP).

We only ever need to compute with distributions over function values. The
formulas from a few slides ago are all you need to do regression with GPs.

But distributions over functions are conceptually cleaner.
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GP Kernels

One way to define a kernel function is to give a set of basis functions
and put a Gaussian prior on w.
But we have lots of other options. Here’s a useful one, called the
squared-exp, or Gaussian, or radial basis function (RBF) kernel:

kSE(xi , xj) = σ2 exp

(
−
‖xi − xj‖2

2`2

)
More accurately, this is a kernel family with hyperparameters σ and `.
It gives a distribution over smooth functions:
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GP Kernels

kSE(xi , xj) = σ2 exp

(
− (xi − xj)

2

2`2

)
The hyperparameters determine key properties of the function.

Varying the output variance σ2:

Varying the lengthscale `:
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GP Kernels

The choice of hyperparameters heavily influences the predictions:

In practice, it’s very important to tune the hyperparameters (e.g. by
maximizing the marginal likelihood).
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GP Kernels

kSE(xi , xj) = σ2 exp

(
−

(xi − xj)
2

2`2

)

The squared-exp kernel is stationary because it only depends on
xi − xj . Most kernels we use in practice are stationary.

We can visualize the function k(0, x):
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GP Kernels

The periodic kernel encodes for a probability distribution over periodic
functions
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GP Kernels

The linear kernel results in a probability distribution over linear
functions
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GP Kernels

The Matern kernel is similar to the squared-exp kernel, but less
smooth.

See Chapter 4 of GPML for an explanation (advanced).

Imagine trying to get this behavior by designing basis functions!
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GP Kernels

We get exponentially more flexibility by combining kernels.
The sum of two kernels is a kernel.

This is because valid covariance matrices (i.e. PSD matrices) are closed
under addition.

The sum of two kernels corresponds to the sum of functions.

Linear + Periodic

e.g. seasonal pattern w/ trend

Additive kernel

k(x , y , x ′, y ′) = k1(x , x ′) + k2(y , y ′)
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GP Kernels

A kernel is like a similarity function on the input space. The sum of
two kernels is like the OR of their similarity.

Amazingly, the product of two kernels is a kernel. (Follows from the
Schur Product Theorem.)

The product of two kernels is like the AND of their similarity
functions.

Example: the product of a squared-exp kernel (spatial similarity) and
a periodic kernel (similar location within cycle) gives a locally periodic
function.
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GP Kernels

Modeling CO2 concentrations:
trend + (changing) seasonal pattern + short-term variability + noise

Encoding the structure allows sensible extrapolation.
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Summary

Bayesian linear regression lets us determine uncertainty in our
predictions.

We can make it nonlinear by using fixed basis functions.

Bayesian Occam’s Razor is a sophisticated way of penalizing the
complexity of a distribution over functions.

Gaussian processes are an elegant framework for doing Bayesian
inference directly over functions.

The choice of kernels gives us much more control over what sort of
functions our prior would allow or favor.

Next time: Bayesian neural nets, a different way of making Bayesian
linear regression more powerful.
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