CSC2541 Lecture 2
Bayesian Occam’s Razor and Gaussian Processes

Roger Grosse

CSC2541 Lecture 2 Bayesian Occam's Razor 1/55



Adminis-Trivia

Did everyone get my e-mail last week?

o If not, let me know.
e You can find the announcement on Blackboard.

@ Sign up on Piazza.
@ Is everyone signed up for a presentation slot?
@ Form project groups of 3-5. If you don't know people, try posting to

Piazza.
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-
Advice on Readings

@ 4-6 readings per week, many are fairly mathematical

@ They get lighter later in the term.

@ Don't worry about learning every detail. Try to understand the main
ideas so you know when you should refer to them.

o What problem are they trying to solve? What is their contribution?
e How does it relate to the other papers?

e What evidence do they present? Is it convincing?
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Advice on Readings

@ 4-6 readings per week, many are fairly mathematical

They get lighter later in the term.
@ Don't worry about learning every detail. Try to understand the main
ideas so you know when you should refer to them.
o What problem are they trying to solve? What is their contribution?
e How does it relate to the other papers?
e What evidence do they present? Is it convincing?
@ Reading mathematical material
e You'll get to use software packages, so no need to go through
line-by-line.
What assumptions are they making, and how are those used?
What is the main insight?
Formulas: if you change one variable, how do other things vary?
What guarantees do they obtain? How do those relate to the other
algorithms we cover?

@ Don't let it become a chore. | chose readings where you still get
something from them even if you don't absorb every detail.
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N
This Lecture

Linear regression and smoothing splines
Bayesian linear regression

“Bayesian Occam’s Razor"

Gaussian processes

We'll put off the Automatic Statistician for later
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Function Approximation

@ Many machine learning tasks can be viewed as function
approximation, e.g.
e object recognition (image — category)
speech recognition (waveform — text)
machine translation (French — English)
generative modeling (noise — image)

"]
"]
]
e reinforcement learning (state — value, or state — action)

@ In the last few years, neural nets have revolutionized all of these
domains, since they're really good function approximators

@ Much of this class will focus on being Bayesian about function
approximation.
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Review: Linear Regression

@ Probably the simplest function approximator is linear regression. This
is a useful starting point since we can solve and analyze it analytically.

o Given a training set of inputs and targets {(x(), t())}N
@ Linear model:
y = wix+b

@ Squared error loss:
Lly.t) = 5t~y

@ Solution 1: solve analytically by setting gradient to 0
w=(X"X)"IXTt

@ Solution 2: solve approximately using gradient descent

wew—aX(y—t)
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Nonlinear Regression: Basis Functions

@ We can model a function as linear in a set of basis functions (i.e. feature mapping):
y=w'¢(x)
@ E.g., we can fit a degree-k polynomial using the mapping
o(x) = (1, x, 2. 7xk).

@ Exactly the same algorithms/formulas as ordinary linear regression: just pretend
¢(x) are the inputs!

@ Best-fitting cubic polynomial:

— Bishop, Pattern Recognition and Machine Learning

@ Before 2012, feature engineering was the hardest part of building many Al systems.
Now it’s done automatically with neural nets.

CSC2541 Lecture 2 Bayesian Occam's Razor 7 /55



Nonlinear Regression: Smoothing Splines

@ An alternative approach to nonlinear regression: fit an arbitrary
function, but encourage it to be smooth.

@ This is called a smoothing spline.

N
E(F,N) = S (19 — F(x(M)? 4 / (F"(2))2 dz
i=1

, N———

regularizer

mean squared error

@ What happens for A =07 A = o0?
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Nonlinear Regression: Smoothing Splines

@ An alternative approach to nonlinear regression: fit an arbitrary
function, but encourage it to be smooth.

@ This is called a smoothing spline.

E(F.N) = Z(t PO [(57(2)) dz

, N———

regularizer

mean squared error

@ What happens for A =07 A = o0?

@ Even though f is unconstrained, it turns out the optimal f can be
expressed as a linear combination of (data-dependent) basis functions

e l.e, algorithmically, it's just linear regression! (minus some numerical
issues that we'll ignore)
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Nonlinear Regression: Smoothing Splines

@ Mathematically, we express f as a linear combination of basis functions:
f(x) = Z w;i(x) y=f(x) = dw
@ Squared error term (just like in linear regression):

It — ow]®

[ @ra= [ (Z w@,-(z))Q dz

i

_ / Zzw,w;’(z) 67 (2) dz
_ZZW’WJ/d) ) @7 (z)dz

[ ——

=0

@ Regularizer:

-
=w Qw
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Nonlinear Regression: Smoothing Splines

@ Full cost function:
Ew,\) = [t — dw|? +  w' Qw
e Optimal solution (derived by setting gradient to zero):

w=(d"o+ Q) o't
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Foreshadowing

Linear
Regression
Linear Regression _ » Smoothing
w/ Basis Functions Splines
Tea
Neural _ Kernel
Nets Regression
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Linear Regression as Maximum Likelihood

@ We can give linear regression a probabilistic interpretation by assuming a Gaussian
noise model:

t|x ~N(w'x+b, 6°)

@ Linear regression is just maximum likelihood under this model:

N
1 I
N E log p(t™ | x1: w, b)

i=1

2 \

N
Zog/\/(t w x4 b,0%)

N R

N
- 1 D _ Wl 2
= const N2 Z(t w x — b)

i=1

= \
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Bayesian Linear Regression

@ Bayesian linear regression considers various plausible explanations for
how the data were generated.
@ It makes predictions using all possible regression weights, weighted by

their posterior probability.

two observations

no observations one observation
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Bayesian Linear Regression

@ Leave out the bias for simplicity

@ Prior distribution: a broad, spherical (multivariate) Gaussian centered at
zero:

w ~ N(0,°1)
@ Likelihood: same as in the maximum likelihood formulation:
tix,w~N(w'x, o?)
@ Posterior:
w|D ~ N(p,X)
p=o02EX"t
I =021+ 072X"X

@ Compare with linear regression formula:

w=(X"X)"IXTt
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Bayesian Linear Regression

likelihood prior/posterior data space
1 1
wy Y
0 0
-1 -1
-1 [ -1 0 oz 1

g
, =
) = T -

-1 0wy ! 1 0y 1 1 o oz 1
1 1 1
wy w1 v
0 0 0 9
E| -1 -1
-1 0 U‘U‘ -1 0 wo 1 1 0 T 1

&
& a B

0

wo ! -1 0 g

— Bishop, Pattern Recognition and Machine_Learning
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Bayesian Linear Regression

@ We can turn this into nonlinear regression using basis functions.

@ E.g., Gaussian basis functions

RIS ECEYS

252

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

Functions sampled from the posterior:

-1

-1

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

@ Posterior predictive distribution:

p(t|x, D) =/p<t|x,w)p<w|z>)dw

= N(t | p‘Txﬂ U}%red(x))

O-I?)red(x) = 0-2 + XTZX)

where p and X are the posterior mean and covariance of X.
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Bayesian Linear Regression

Posterior predictive distribution:

— Bishop, Pattern Recognition and Machine Learning
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Foreshadowing

Linear
Regression
Linear Regression _ » Smoothing
w/ Basis Functions Splines
Tea
Neural _ Kernel
Nets Regression
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Foreshadowing

Bayesian Linear
Regression

Bayesian Linear Regression _ Bayesian
w/ Basis Functions Interpolation
ha
Bayesian e > Gaussian
Neural Nets Processes
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Occam’s Razor
@ Data modeling process according to MacKay:

R Create
Gather alternative
DATA MODELS

Fit each MODEL

[ to the DATA ‘]

Gather Create new
more data Assign preferences to the models
alternative MODELS '

Choose what / l \ Decide whether

data to to create new
gather next models

Choose future
actions
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Occam’s Razor

@ Occam'’s Razor: “Entities should not be multiplied beyond necessity.
o Named after the 14th century British theologian William of Occam
@ Huge number of attempts to formalize mathematically
e See Domingos, 1999, “The role of Occam’s Razor in knowledge
discovery” for a skeptical overview.
https://homes.cs.washington.edu/~pedrod/papers/dmkd99.pdf
@ Common misinterpretation: your prior should favor simple
explanations
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Occam’s Razor

@ Suppose you have a finite set of models, or hypotheses {#;}M,
(e.g. polynomials of different degrees)

@ Posterior inference over models (Bayes' Rule):

p(H; | D) o< p(Hi) p(D | #i)

prior  evidence

@ Which of these terms do you think is more important?

CSC2541 Lecture 2 Bayesian Occam's Razor 24 / 55



Occam’s Razor

@ Suppose you have a finite set of models, or hypotheses {#;}M,
(e.g. polynomials of different degrees)

@ Posterior inference over models (Bayes' Rule):
p(Hi|D) o< p(Hi) p(D | Hi)
\\,./\W_/
prior  evidence

@ Which of these terms do you think is more important?

@ The evidence is also called marginal likelihood since it requires
marginalizing out the parameters:

P(D 1) = [ plw | :) p(D | w, 1)

e If we're comparing a handful of hypotheses, p(#;) isn't very
important, so we can compare them based on marginal likelihood.
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Occam’s Razor

@ Suppose My, M, and M3 denote a linear, quadratic, and cubic model.

@ Ms; is capable of explaning more datasets than Mj.

o But its distribution over D must integrate to 1, so it must assign
lower probability to ones it can explain.

p(D)

4

My

M

Dy D

— Bishop, Pattern Recognition and Machine Learning
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Occam’s Razor

@ How does the evidence (or marginal likelihood) penalize complex
models?

@ Approximating the integral:

p(D ) = [ (D w. ) plw| )

~ p(D|wnap, Hi) p(wvap | Hi) Aw

best-fit likelihood Occam factor
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Occam’s Razor

ikelihood prioriposterior data space
1 1

@ Multivariate case: @ §

p(D|Hi) = p(D |waiap, Hi) p(waar | H) A7V . :
best-fit likelihood Occam factor “lu M( Vu §
where A = V2 log p(D | w, H,) I

@ The determinant appears because we're
taking the volume.

@ The more parameters in the model, the
higher dimensional the parameter space,
and the faster the volume decays. Ml L ol M TE

— Bishop, Pattern Recognition and Machine
Learning

CSC2541 Lecture 2 Bayesian Occam's Razor 27 / 55



Occam’s Razor

@ Analyzing the asymptotic behavior:

A =V log p(D | w, H;)

N
> Vi log p(yi | xi,w, M)
=1

24

~ NE[A]

log Occam factor = log p(wnmap | Hi) + log |A|71/2

~ log p(wniap | Hi) + log [N E[A]| 7/

1 Dlog N
2 2

= log p(wmarp | Hi) — 5 log [E[A]] —

Dlog N
2

= const —

@ Bayesian Information Criterion (BIC): penalize the complexity of your model by
1Dlog N
5D log N.
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Occam’s Razor

@ Summary

p(Hi|D) o< p(Hi) p(D | H,i)
p(D|H;) =~ p(D | waap, Hi) p(wniap | Hi) |A]7Y/2

Asymptotically, with lots of data, this behaves like
1
log p(D | #;) = log p(D | wniap, Hi) — 5 Dlog N.

@ Occam'’s Razor is about integration, not priors (over hypotheses).

CSC2541 Lecture 2 Bayesian Occam's Razor 29 / 55



Bayesian Interpolation

@ So all we need to do is count parameters? Not so fast!

@ Let's consider the Bayesian analogue of smoothing splines, which
MacKay refers to as Bayesian interpolation.

Bayesian Linear

Regression
Bayesian Linear Regression _ _______ . Bayesian
w/ Basis Functions Interpolation
a
Bayesian e . Gaussian
Neural Nets Processes
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Bayesian Interpolation

@ Recall the smoothing spline objective. How many parameters?

Z(t PO [(7(2)) 2

S

regularizer

n'g
mean squared error
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Bayesian Interpolation

@ Recall the smoothing spline objective. How many parameters?

Z(t PO [ (7)) dz

S

regularizer

n'g
mean squared error

@ Recall we can convert it to basis function regression with one basis
function per training example.

e So we have N parameters, and hence a log Occam factor ~ %Nlog N7
e You would never prefer this over a constant function!
o Fortunately, this is not what happens.

@ For computational convenience, we could choose some other set of
basis functions (e.g. polynomials).
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Bayesian Interpolation
@ To define a Bayesian analogue of smoothing splines, let's convert it to

a Bayesian basis function regression problem.
@ The likelihood is easy:

N
p(D|w) = [[N(ilw' p(x),0?)
i=1

@ We'd like a prior which favors smoother functions:

o <0 (- f(cpac)
= exp <—2WTQW>

Note: this is a zero-mean Gaussian.
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Bayesian Interpolation

@ Posterior distribution and posterior predictive distribution (special
case of Bayesian linear regression)

w|D ~N(p, X)
p=oc2EX"t
T 1= +072XTX
p(t|x, D) =o%+x"Ex

@ Optimize the hyperparameters o and A by maximizing the evidence
(marginal likelihood).

e This is known as the evidence approximation, or type 2 maximum
likelihood.
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Bayesian Interpolation

@ This makes reasonable predictions:

3 T T T T T T T

Typical interpolants
pata O

y (%)
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Bayesian Interpolation
more basis functions:

Behavior w/ spherical prior as we add
Order 0 Order 1 Order 2 Order 3 Order 4 Order 5
2 . 2 2 2 4 2 « 2
. JPEN ~ R 4
1| 5 B ST I B 1| AN 1 i Py
o Fo + o AV
of . of 0 0 off 4/ ofh ./ z
IR | e -1 -1 mIRSA —1f %
+ A \ e +
-2 -2 / -2 -2~ -2 -2
/ {
-1 0 1 -1 0 1 -1 0 1 -1.0 1 -1 0 1 -1 0 1
Order 6 Order 7 Order 8 Order 9 Order 10 Order 11
2 2
; ¢ . S
g 1 no7n 1 o 7
AAL L AR
01, 4 o\ o M &
-1| BT
. -
-2 -2
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
0.25 B

5 6
Model order

— Rasmussen and Ghahramani, “Occam’s Razor™
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Bayesian Interpolation
Behavior w/ smoothness prior as we add more basis functions:
Order 5

Order 0 Order 1 Order 2 Order 3 Order 4
2l 2 = 2 2 12 L
P 2 i # % P AN
14T 1 ¥ X 1 R i 1 1 g7
0 0 }/ o of of 0 ,/‘
o
Al 5 ElT - El Ele El A A
+ i FA # \ 4
-2 -2l / -2/ -2} -2 -2
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
Order 6 Order 7 Order 8 Order 9 Order 10 Order 11
2 " 2 2 2 2
\&:2 NS NN
1 .j(". SN 1 j 1 N 1 1
0 o 0 0 [ 0
Y, i
I 1| T - - -1
i = 4
-2 -2 -2 -2 -2
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
0.25[ 3
0.2 1
0.15
01
0.05~
[
0 1 2 3 4 5 6 7 8 9 10 1
Model order
— Rasmussen and Ghahramani, “Occam’s Razor”
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Towards Gaussian Processes

@ Splines stop getting more complex as you add more basis functions.

@ Bayesian Occam’s Razor penalizes the complexity of the distribution
over functions, not the number of parameters.

@ Maybe we can fit infinitely many parameters!

e Rasmussen and Ghahramani (2001): in the infinite limit, the
distribution over functions approaches a Gaussian process.
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Towards Gaussian Processes

@ Gaussian Processes are distributions over functions.

@ They're actually a simpler and more intuitive way to think about
regression, once you're used to them.

N
“”‘\\\-‘\: \
= 0”‘ () W o
N ;‘::“’. 0 \ \“ ST,
‘3\‘% “‘4"3!0 SR .‘&\\““" %
Q‘Q\\\\‘\,“ .\\\\ "A’
"‘a\‘{:\:‘: Ly

N

e
B0

Sl

"

— GPML
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Towards Gaussian Processes

@ A Bayesian linear regression model defines a distribution over
functions:

f(x) =w'¢(x)
Here, w is sampled from the prior N'(pty,, Zw).
o Let f = (f1,..., fy) denote the vector of function values at
(Xl, e ,XN).
@ The distribution of f is a Gaussian with
E[f] = pw$(x)
Cov(fi, £) = ¢(x))  Tuo(x))
@ In vectorized form, f ~ N(us, ) with
pi = E[f] = op,,
¢ = Cov(f) = o, 0"
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Towards Gaussian Processes

@ Recall that in Bayesian linear regression, we assume noisy Gaussian

observations of the underlying function.
yi ~ N(fi,0%) = N(w' $(x;),0?).
@ The observations y are jointly Gaussian, just like f.

Ely;] = E[f(x;)]

Cov(yi, yj) Var(f( ) +o? ifi=]
ov\yi,Yj) =
T Coulf(xi). Flx)) it £
o In vectorized form, y ~ N(py, Xy), with

p’y:“f

T, =X+ ol
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Towards Gaussian Processes

@ Bayesian linear regression is just computing the conditional
distribution in a multivariate Gaussian!

@ Let y and y’ denote the observables at the training and test data.

@ They are jointly Gaussian:

y 1} )X ) I
) () (& £2)
(y) Ky Tyy Zyy

@ The predictive distribution is a special case of the conditioning
formula for a multivariate Gaussian:
Y Iy ~ Npyy, Zyy)
Hyly = By + Zyy oty — py)
Tyly =Zyy — zy’y}:;ylzyy’
o We're implicitly marginalizing out w!
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Towards Gaussian Processes

@ The marginal likelihood is just the PDF of a multivariate Gaussian:

p(y [ X) = N(y; py, Zy)
1

_ 1 Te-—1
- (27‘_)6//2‘2”1/2 exp <_2(y - l’l’y) Zy (y - /‘l’y)>

CSC2541 Lecture 2 Bayesian Occam's Razor 42 /55



Towards Gaussian Processes

@ To summarize:

Mg = q)u’w
Ti=0%,0
l'l’y = M

¥, =X+ ol

[,Ly/|y = lLy/ + Zy/yzy_yl(y — [,Ly)
-1
Tyy=Zyy —Lyyr iy
p(y [ X) = N(y; py, Zy)
o After defining ps and X, we can forget about w and x!
o What if we just let pf and ¢ be anything?
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Gaussian Processes

© When | say let ¢ and ¢ be anything, | mean let them have an
arbitrary functional dependence on the inputs.
@ We need to specify
e a mean function E[f(x;)] = p(x/)
e a covariance function called a kernel function:
Cov(f(xi), f(xj)) = k(xi,x;)
o Let Kx denote the kernel matrix for points X. This is a matrix whose
(i,]) entry is k(x;,X;).
o We require that Kx be positive semidefinite for any X. Other than
that, p and k can be arbitrary.
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Gaussian Processes

@ We've just defined a distribution over function values at an arbitrary finite set of
points.

@ This can be extended to a distribution over functions using a kind of black magic
called the Kolmogorov Extension Theorem. This distribution over functions is
called a Gaussian process (GP).

@ We only ever need to compute with distributions over function values. The
formulas from a few slides ago are all you need to do regression with GPs.

@ But distributions over functions are conceptually cleaner.

output, f(x)
| og‘
=) -

output, f(x)

-2 -2|
-5 "0 5 -5 ) 5
input, x input, x
(a), prior (b), posterior
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GP Kernels
@ One way to define a kernel function is to give a set of basis functions
and put a Gaussian prior on w.

@ But we have lots of other options. Here's a useful one, called the
squared-exp, or Gaussian, or radial basis function (RBF) kernel:

2
_ 2 %7 — x|
ksk(xi,xj) = 0% exp <—2€2

More accurately, this is a kernel family with hyperparameters o and £.
It gives a distribution over smooth functions:

2

't \/

-2

output, f(x)

-5 0 5
input, x
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N
GP Kernels

202
@ The hyperparameters determine key properties of the function.

(xi — Xj)2>

kse (xi, ) = o exp (*

@ Varying the output variance o*:

4 4 4
3 3 3 P
2 2 2
o [ - 1 \/
0 S—— 0 ~ Z 0f N\ / -
-1 | — ——= -1~ N //
-2 -2 -2
-3 -3 -3
-4 -4 -4
0 1 2 3 a4 5 0 1 2 a4 5 0 1 3 4 5
0% =0.3 =1 =3
@ Varying the lengthscale £:
2.0
15
10—
05 =
0.0
-0.5
-1.0 - —_—
-1.5
-2.0
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N
GP Kernels

@ The choice of hyperparameters heavily influences the predictions:

3 3
2 2
1 1
> >
31 31
-2 o
-3 -3 -
- inpgt, x ° -5 inpﬂt X 5 ° inpgl, x s
(b), £=03 (a),£=1 (c), £=3

@ In practice, it's very important to tune the hyperparameters (e.g. by
maximizing the marginal likelihood).
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N
GP Kernels

(xi — x;)?
kse(xi, Xj) = o2 exp <—2£21

@ The squared-exp kernel is stationary because it only depends on

x; — Xj. Most kernels we use in practice are stationary.

@ We can visualize the function k(0, x):
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N
GP Kernels

@ The periodic kernel encodes for a probability distribution over periodic
functions
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N
GP Kernels

@ The linear kernel results in a probability distribution over linear
functions
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N
GP Kernels

@ The Matern kernel is similar to the squared-exp kernel, but less
smooth.

@ See Chapter 4 of GPML for an explanation (advanced).

@ Imagine trying to get this behavior by designing basis functions!

— v=1/2 |
oo v=2
_ 08 v—=o |
= z
206 het
5 5
804 E
8
0.2
0 -
] 1 . 2 3 -5 -0 5
input distance, r input, X
(a) (b)
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N
GP Kernels

@ We get exponentially more flexibility by combining kernels.
@ The sum of two kernels is a kernel.
e This is because valid covariance matrices (i.e. PSD matrices) are closed
under addition.

@ The sum of two kernels corresponds to the sum of functions.

Additive kernel
Linear + Periodic k(x,y,x',y") = ki(x,x') + ka(y,y")

e.g. seasonal pattern w/ trend

| T
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N
GP Kernels

@ A kernel is like a similarity function on the input space. The sum of
two kernels is like the OR of their similarity.

e Amazingly, the product of two kernels is a kernel. (Follows from the
Schur Product Theorem.)

@ The product of two kernels is like the AND of their similarity
functions.

@ Example: the product of a squared-exp kernel (spatial similarity) and
a periodic kernel (similar location within cycle) gives a locally periodic
function.

0
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N
GP Kernels

@ Modeling CO2 concentrations:
trend + (changing) seasonal pattern + short-term variability + noise

@ Encoding the structure allows sensible extrapolation.

420 — T T

400

380

360

340

CO2 concentration, ppm

A | 1 | | | |
1960 1970 1980 1990 2000 2010 2020
year
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Summary

o Bayesian linear regression lets us determine uncertainty in our
predictions.

@ We can make it nonlinear by using fixed basis functions.

@ Bayesian Occam’s Razor is a sophisticated way of penalizing the
complexity of a distribution over functions.

@ Gaussian processes are an elegant framework for doing Bayesian
inference directly over functions.

@ The choice of kernels gives us much more control over what sort of
functions our prior would allow or favor.

@ Next time: Bayesian neural nets, a different way of making Bayesian
linear regression more powerful.
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