CSC2541 Lecture 2
 Bayesian Occam's Razor and Gaussian Processes

Roger Grosse

Adminis-Trivia

- Did everyone get my e-mail last week?
- If not, let me know.
- You can find the announcement on Blackboard.
- Sign up on Piazza.
- Is everyone signed up for a presentation slot?
- Form project groups of 3-5. If you don't know people, try posting to Piazza.

Advice on Readings

- 4-6 readings per week, many are fairly mathematical
- They get lighter later in the term.
- Don't worry about learning every detail. Try to understand the main ideas so you know when you should refer to them.
- What problem are they trying to solve? What is their contribution?
- How does it relate to the other papers?
- What evidence do they present? Is it convincing?

Advice on Readings

- 4-6 readings per week, many are fairly mathematical
- They get lighter later in the term.
- Don't worry about learning every detail. Try to understand the main ideas so you know when you should refer to them.
- What problem are they trying to solve? What is their contribution?
- How does it relate to the other papers?
- What evidence do they present? Is it convincing?
- Reading mathematical material
- You'll get to use software packages, so no need to go through line-by-line.
- What assumptions are they making, and how are those used?
- What is the main insight?
- Formulas: if you change one variable, how do other things vary?
- What guarantees do they obtain? How do those relate to the other algorithms we cover?
- Don't let it become a chore. I chose readings where you still get something from them even if you don't absorb every detail.

This Lecture

- Linear regression and smoothing splines
- Bayesian linear regression
- "Bayesian Occam's Razor"
- Gaussian processes
- We'll put off the Automatic Statistician for later

Function Approximation

- Many machine learning tasks can be viewed as function approximation, e.g.
- object recognition (image \rightarrow category)
- speech recognition (waveform \rightarrow text)
- machine translation (French \rightarrow English)
- generative modeling (noise \rightarrow image)
- reinforcement learning (state \rightarrow value, or state \rightarrow action)
- In the last few years, neural nets have revolutionized all of these domains, since they're really good function approximators
- Much of this class will focus on being Bayesian about function approximation.

Review: Linear Regression

- Probably the simplest function approximator is linear regression. This is a useful starting point since we can solve and analyze it analytically.
- Given a training set of inputs and targets $\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right\}_{i=1}^{N}$
- Linear model:

$$
y=\mathbf{w}^{\top} \mathbf{x}+b
$$

- Squared error loss:

$$
\mathcal{L}(y, t)=\frac{1}{2}(t-y)^{2}
$$

- Solution 1: solve analytically by setting gradient to 0

$$
\mathbf{w}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
$$

- Solution 2: solve approximately using gradient descent

$$
\mathbf{w} \leftarrow \mathbf{w}-\alpha \mathbf{X}^{\top}(\mathbf{y}-\mathbf{t})
$$

Nonlinear Regression: Basis Functions

- We can model a function as linear in a set of basis functions (i.e. feature mapping):

$$
y=\mathbf{w}^{\top} \phi(x)
$$

- E.g., we can fit a degree- k polynomial using the mapping

$$
\phi(\mathbf{x})=\left(1, x, x^{2}, \ldots, x^{k}\right) .
$$

- Exactly the same algorithms/formulas as ordinary linear regression: just pretend $\phi(x)$ are the inputs!
- Best-fitting cubic polynomial:

- Bishop, Pattern Recognition and Machine Learning
- Before 2012, feature engineering was the hardest part of building many AI systems. Now it's done automatically with neural nets.

Nonlinear Regression: Smoothing Splines

- An alternative approach to nonlinear regression: fit an arbitrary function, but encourage it to be smooth.
- This is called a smoothing spline.

$$
\mathcal{E}(f, \lambda)=\underbrace{\sum_{i=1}^{N}\left(t^{(i)}-f\left(x^{(i)}\right)\right)^{2}}_{\text {mean squared error }}+\lambda \underbrace{\int\left(f^{\prime \prime}(z)\right)^{2} \mathrm{~d} z}_{\text {regularizer }}
$$

- What happens for $\lambda=0$? $\lambda=\infty$?

Nonlinear Regression: Smoothing Splines

- An alternative approach to nonlinear regression: fit an arbitrary function, but encourage it to be smooth.
- This is called a smoothing spline.

$$
\mathcal{E}(f, \lambda)=\underbrace{\sum_{i=1}^{N}\left(t^{(i)}-f\left(x^{(i)}\right)\right)^{2}}_{\text {mean squared error }}+\lambda \underbrace{\int\left(f^{\prime \prime}(z)\right)^{2} \mathrm{~d} z}_{\text {regularizer }}
$$

- What happens for $\lambda=0$? $\lambda=\infty$?
- Even though f is unconstrained, it turns out the optimal f can be expressed as a linear combination of (data-dependent) basis functions
- I.e., algorithmically, it's just linear regression! (minus some numerical issues that we'll ignore)

Nonlinear Regression: Smoothing Splines

- Mathematically, we express f as a linear combination of basis functions:

$$
f(x)=\sum_{i} w_{i} \phi_{i}(x) \quad \mathbf{y}=f(\mathbf{x})=\mathbf{\Phi} \mathbf{w}
$$

- Squared error term (just like in linear regression):

$$
\|\mathbf{t}-\boldsymbol{\Phi} \mathbf{w}\|^{2}
$$

- Regularizer:

$$
\begin{aligned}
\int\left(f^{\prime \prime}(z)\right)^{2} \mathrm{~d} z & =\int\left(\sum_{i} w_{i} \phi_{i}(z)\right)^{2} \mathrm{~d} z \\
& =\int \sum_{i} \sum_{j} w_{i} w_{j} \phi_{i}^{\prime \prime}(z) \phi_{j}^{\prime \prime}(z) \mathrm{d} z \\
& =\sum_{i} \sum_{j} w_{i} w_{j} \underbrace{\int \phi_{i}^{\prime \prime}(z) \phi_{j}^{\prime \prime}(z) \mathrm{d} z}_{=\Omega_{i j}} \\
& =\mathbf{w}^{\top} \mathbf{\Omega} \mathbf{w}
\end{aligned}
$$

Nonlinear Regression: Smoothing Splines

- Full cost function:

$$
\mathcal{E}(\mathbf{w}, \lambda)=\|\mathbf{t}-\boldsymbol{\Phi} \mathbf{w}\|^{2}+\lambda \mathbf{w}^{\top} \boldsymbol{\Omega} \mathbf{w}
$$

- Optimal solution (derived by setting gradient to zero):

$$
\mathbf{w}=\left(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}+\lambda \boldsymbol{\Omega}\right)^{-1} \boldsymbol{\Phi}^{\top} \mathbf{t}
$$

Foreshadowing

Linear Regression as Maximum Likelihood

- We can give linear regression a probabilistic interpretation by assuming a Gaussian noise model:

$$
t \mid \mathbf{x} \sim \mathcal{N}\left(\mathbf{w}^{\top} \mathbf{x}+b, \sigma^{2}\right)
$$

- Linear regression is just maximum likelihood under this model:

$$
\begin{aligned}
\frac{1}{N} \sum_{i=1}^{N} \log p\left(t^{(i)} \mid \mathbf{x}^{(i)} ; \mathbf{w}, b\right) & =\frac{1}{N} \sum_{i=1}^{N} \log \mathcal{N}\left(t^{(i)} ; \mathbf{w}^{\top} \mathbf{x}+b, \sigma^{2}\right) \\
& =\frac{1}{N} \sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(t^{(i)}-\mathbf{w}^{\top} \mathbf{x}-b\right)^{2}}{2 \sigma^{2}}\right)\right] \\
& =\text { const }-\frac{1}{2 N \sigma^{2}} \sum_{i=1}^{N}\left(t^{(i)}-\mathbf{w}^{\top} \mathbf{x}-b\right)^{2}
\end{aligned}
$$

Bayesian Linear Regression

- Bayesian linear regression considers various plausible explanations for how the data were generated.
- It makes predictions using all possible regression weights, weighted by their posterior probability.

no observations

one observation

two observations

Bayesian Linear Regression

- Leave out the bias for simplicity
- Prior distribution: a broad, spherical (multivariate) Gaussian centered at zero:

$$
\mathbf{w} \sim \mathcal{N}\left(\mathbf{0}, \nu^{2} \mathbf{I}\right)
$$

- Likelihood: same as in the maximum likelihood formulation:

$$
t \mid \mathbf{x}, \mathbf{w} \sim \mathcal{N}\left(\mathbf{w}^{\top} \mathbf{x}, \sigma^{2}\right)
$$

- Posterior:

$$
\begin{aligned}
\mathbf{w} \mid \mathcal{D} & \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \\
\boldsymbol{\mu} & =\sigma^{-2} \boldsymbol{\Sigma} \mathbf{X}^{\top} \mathbf{t} \\
\boldsymbol{\Sigma}^{-1} & =\nu^{-2} \mathbf{I}+\sigma^{-2} \mathbf{X}^{\top} \mathbf{X}
\end{aligned}
$$

- Compare with linear regression formula:

$$
\mathbf{w}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
$$

Bayesian Linear Regression

Bayesian Linear Regression

- We can turn this into nonlinear regression using basis functions.
- E.g., Gaussian basis functions

$$
\phi_{j}(x)=\exp \left(-\frac{\left(x-\mu_{j}\right)^{2}}{2 s^{2}}\right)
$$

- Bishop, Pattern Recognition and Machine Learning

Bayesian Linear Regression

Functions sampled from the posterior:

- Bishop, Pattern Recognition and Machine Learning

Bayesian Linear Regression

- Posterior predictive distribution:

$$
\begin{aligned}
p(t \mid \mathbf{x}, \mathcal{D}) & =\int p(t \mid x, \mathbf{w}) p(\mathbf{w} \mid \mathcal{D}) \mathrm{d} \mathbf{w} \\
& =\mathcal{N}\left(t \mid \boldsymbol{\mu}^{\top} \mathbf{x}, \sigma_{\text {pred }}^{2}(x)\right) \\
\sigma_{\text {pred }}^{2}(x) & =\sigma^{2}+\mathbf{x}^{\top} \boldsymbol{\Sigma} \mathbf{x}
\end{aligned}
$$

where $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ are the posterior mean and covariance of $\boldsymbol{\Sigma}$.

Bayesian Linear Regression

Posterior predictive distribution:

- Bishop, Pattern Recognition and Machine Learning

Foreshadowing

Foreshadowing

Occam's Razor

- Data modeling process according to MacKay:

Occam's Razor

- Occam's Razor: "Entities should not be multiplied beyond necessity."
- Named after the 14th century British theologian William of Occam
- Huge number of attempts to formalize mathematically
- See Domingos, 1999, "The role of Occam's Razor in knowledge discovery" for a skeptical overview.
https://homes.cs.washington.edu/~pedrod/papers/dmkd99.pdf
- Common misinterpretation: your prior should favor simple explanations

Occam's Razor

- Suppose you have a finite set of models, or hypotheses $\left\{\mathcal{H}_{i}\right\}_{i=1}^{M}$ (e.g. polynomials of different degrees)
- Posterior inference over models (Bayes' Rule):

$$
p\left(\mathcal{H}_{i} \mid \mathcal{D}\right) \propto \underbrace{p\left(\mathcal{H}_{i}\right)}_{\text {prior }} \underbrace{p\left(\mathcal{D} \mid \mathcal{H}_{i}\right)}_{\text {evidence }}
$$

- Which of these terms do you think is more important?

Occam's Razor

- Suppose you have a finite set of models, or hypotheses $\left\{\mathcal{H}_{i}\right\}_{i=1}^{M}$ (e.g. polynomials of different degrees)
- Posterior inference over models (Bayes' Rule):

$$
p\left(\mathcal{H}_{i} \mid \mathcal{D}\right) \propto \underbrace{p\left(\mathcal{H}_{i}\right)}_{\text {prior }} \underbrace{p\left(\mathcal{D} \mid \mathcal{H}_{i}\right)}_{\text {evidence }}
$$

- Which of these terms do you think is more important?
- The evidence is also called marginal likelihood since it requires marginalizing out the parameters:

$$
p\left(\mathcal{D} \mid \mathcal{H}_{i}\right)=\int p\left(\mathbf{w} \mid \mathcal{H}_{i}\right) p\left(\mathcal{D} \mid \mathbf{w}, \mathcal{H}_{i}\right) \mathrm{d} \mathbf{w}
$$

- If we're comparing a handful of hypotheses, $p\left(\mathcal{H}_{i}\right)$ isn't very important, so we can compare them based on marginal likelihood.

Occam's Razor

- Suppose M_{1}, M_{2}, and M_{3} denote a linear, quadratic, and cubic model.
- M_{3} is capable of explaning more datasets than M_{1}.
- But its distribution over \mathcal{D} must integrate to 1 , so it must assign lower probability to ones it can explain.

- Bishop, Pattern Recognition and Machine Learning

Occam's Razor

- How does the evidence (or marginal likelihood) penalize complex models?

- Approximating the integral:

$$
\begin{aligned}
p\left(\mathcal{D} \mid \mathcal{H}_{i}\right) & =\int p\left(\mathcal{D} \mid \mathbf{w}, \mathcal{H}_{i}\right) p\left(\mathbf{w} \mid \mathcal{H}_{i}\right) \\
& \simeq \underbrace{p\left(\mathcal{D} \mid \mathbf{w}_{\mathrm{MAP}}, \mathcal{H}_{i}\right)}_{\text {best-fit likelihood }} \underbrace{p\left(\mathbf{w}_{\mathrm{MAP}} \mid \mathcal{H}_{i}\right) \Delta \mathbf{w}}_{\text {Occam factor }}
\end{aligned}
$$

Occam's Razor

- Multivariate case:

$$
p\left(\mathcal{D} \mid \mathcal{H}_{i}\right) \simeq \underbrace{p\left(\mathcal{D} \mid \mathbf{w}_{\mathrm{MAP}}, \mathcal{H}_{i}\right)}_{\text {best-fit likelihood }} \underbrace{p\left(\mathbf{w}_{\mathrm{MAP}} \mid \mathcal{H}_{i}\right)|\mathbf{A}|^{-1 / 2}}_{\text {Occam factor }}
$$

where $\mathbf{A}=\nabla_{\mathbf{w}}^{2} \log p\left(\mathcal{D} \mid \mathbf{w}, \mathcal{H}_{i}\right)$

- The determinant appears because we're taking the volume.
- The more parameters in the model, the higher dimensional the parameter space, and the faster the volume decays.

- Bishop, Pattern Recognition and Machine Learning

Occam's Razor

- Analyzing the asymptotic behavior:

$$
\begin{aligned}
\mathbf{A} & =\nabla_{\mathbf{w}}^{2} \log p\left(\mathcal{D} \mid \mathbf{w}, \mathcal{H}_{i}\right) \\
& =\sum_{j=1}^{N} \underbrace{\nabla_{\mathbf{w}}^{2} \log p\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{w}, \mathcal{H}_{i}\right)}_{\triangleq A_{i}} \\
& \approx N \mathbb{E}\left[A_{i}\right] \\
\log \text { Occam factor } & =\log p\left(\mathbf{w}_{\mathrm{MAP}} \mid \mathcal{H}_{i}\right)+\log |\mathbf{A}|^{-1 / 2} \\
& \approx \log p\left(\mathbf{w}_{\mathrm{MAP}} \mid \mathcal{H}_{i}\right)+\log \left|N \mathbb{E}\left[A_{i}\right]\right|^{-1 / 2} \\
& =\log p\left(\mathbf{w}_{\mathrm{MAP}} \mid \mathcal{H}_{i}\right)-\frac{1}{2} \log \left|\mathbb{E}\left[A_{i}\right]\right|-\frac{D \log N}{2} \\
& =\operatorname{const}-\frac{D \log N}{2}
\end{aligned}
$$

- Bayesian Information Criterion (BIC): penalize the complexity of your model by $\frac{1}{2} D \log N$.

Occam's Razor

- Summary

$$
\begin{aligned}
& p\left(\mathcal{H}_{i} \mid \mathcal{D}\right) \propto p\left(\mathcal{H}_{i}\right) p\left(\mathcal{D} \mid \mathcal{H}_{i}\right) \\
& p\left(\mathcal{D} \mid \mathcal{H}_{i}\right) \simeq p\left(\mathcal{D} \mid \mathbf{w}_{\mathrm{MAP}}, \mathcal{H}_{i}\right) p\left(\mathbf{w}_{\mathrm{MAP}} \mid \mathcal{H}_{i}\right)|\mathbf{A}|^{-1 / 2}
\end{aligned}
$$

Asymptotically, with lots of data, this behaves like

$$
\log p\left(\mathcal{D} \mid \mathcal{H}_{i}\right)=\log p\left(\mathcal{D} \mid \mathbf{w}_{\mathrm{MAP}}, \mathcal{H}_{i}\right)-\frac{1}{2} D \log N
$$

- Occam's Razor is about integration, not priors (over hypotheses).

Bayesian Interpolation

- So all we need to do is count parameters? Not so fast!
- Let's consider the Bayesian analogue of smoothing splines, which MacKay refers to as Bayesian interpolation.

Bayesian Interpolation

- Recall the smoothing spline objective. How many parameters?

$$
\mathcal{E}(f, \lambda)=\underbrace{\sum_{i=1}^{N}\left(t^{(i)}-f\left(x^{(i)}\right)\right)^{2}}_{\text {mean squared error }}+\lambda \underbrace{\int\left(f^{\prime \prime}(z)\right)^{2} \mathrm{~d} z}_{\text {regularizer }}
$$

Bayesian Interpolation

- Recall the smoothing spline objective. How many parameters?

$$
\mathcal{E}(f, \lambda)=\underbrace{\sum_{i=1}^{N}\left(t^{(i)}-f\left(x^{(i)}\right)\right)^{2}}_{\text {mean squared error }}+\lambda \underbrace{\int\left(f^{\prime \prime}(z)\right)^{2} \mathrm{~d} z}_{\text {regularizer }}
$$

- Recall we can convert it to basis function regression with one basis function per training example.
- So we have N parameters, and hence a \log Occam factor $\approx \frac{1}{2} N \log N$?
- You would never prefer this over a constant function!
- Fortunately, this is not what happens.
- For computational convenience, we could choose some other set of basis functions (e.g. polynomials).

Bayesian Interpolation

- To define a Bayesian analogue of smoothing splines, let's convert it to a Bayesian basis function regression problem.
- The likelihood is easy:

$$
p(\mathcal{D} \mid \mathbf{w})=\prod_{i=1}^{N} \mathcal{N}\left(y_{i} \mid \mathbf{w}^{\top} \phi\left(x_{i}\right), \sigma^{2}\right)
$$

- We'd like a prior which favors smoother functions:

$$
\begin{aligned}
p(\mathbf{w}) & \propto \exp \left(-\frac{\lambda}{2} \int\left(f^{\prime \prime}(z)\right)^{2} \mathrm{~d} z\right) \\
& =\exp \left(-\frac{\lambda}{2} \mathbf{w}^{\top} \boldsymbol{\Omega} \mathbf{w}\right)
\end{aligned}
$$

Note: this is a zero-mean Gaussian.

Bayesian Interpolation

- Posterior distribution and posterior predictive distribution (special case of Bayesian linear regression)

$$
\begin{aligned}
\mathbf{w} \mid \mathcal{D} & \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \\
\boldsymbol{\mu} & =\sigma^{-2} \boldsymbol{\Sigma} \mathbf{X}^{\top} \mathbf{t} \\
\boldsymbol{\Sigma}^{-1} & =\lambda \boldsymbol{\Omega}+\sigma^{-2} \mathbf{X}^{\top} \mathbf{X} \\
p(t \mid \mathbf{x}, \mathcal{D}) & =\sigma^{2}+\mathbf{x}^{\top} \boldsymbol{\Sigma} \mathbf{x}
\end{aligned}
$$

- Optimize the hyperparameters σ and λ by maximizing the evidence (marginal likelihood).
- This is known as the evidence approximation, or type 2 maximum likelihood.

Bayesian Interpolation

- This makes reasonable predictions:

Bayesian Interpolation

Behavior w/ spherical prior as we add more basis functions:

- Rasmussen and Ghahramani, "Occams Razor ${ }^{\text {T }}$

Bayesian Interpolation

Behavior w/ smoothness prior as we add more basis functions:

- Rasmussen and Ghahramani, "Occam's Razor"

Towards Gaussian Processes

- Splines stop getting more complex as you add more basis functions.
- Bayesian Occam's Razor penalizes the complexity of the distribution over functions, not the number of parameters.
- Maybe we can fit infinitely many parameters!
- Rasmussen and Ghahramani (2001): in the infinite limit, the distribution over functions approaches a Gaussian process.

Towards Gaussian Processes

- Gaussian Processes are distributions over functions.
- They're actually a simpler and more intuitive way to think about regression, once you're used to them.

Towards Gaussian Processes

- A Bayesian linear regression model defines a distribution over functions:

$$
f(\mathbf{x})=\mathbf{w}^{\top} \phi(\mathbf{x})
$$

Here, \mathbf{w} is sampled from the prior $\mathcal{N}\left(\boldsymbol{\mu}_{\mathbf{w}}, \boldsymbol{\Sigma}_{\mathbf{w}}\right)$.

- Let $\mathbf{f}=\left(f_{1}, \ldots, f_{N}\right)$ denote the vector of function values at $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)$.
- The distribution of \mathbf{f} is a Gaussian with

$$
\begin{aligned}
\mathbb{E}\left[f_{i}\right] & =\boldsymbol{\mu}_{\mathbf{w}}^{\top} \boldsymbol{\phi}(\mathbf{x}) \\
\operatorname{Cov}\left(f_{i}, f_{j}\right) & =\boldsymbol{\phi}\left(\mathbf{x}_{i}\right)^{\top} \boldsymbol{\Sigma}_{\mathbf{w}} \phi\left(\mathbf{x}_{j}\right)
\end{aligned}
$$

- In vectorized form, $\mathbf{f} \sim \mathcal{N}\left(\boldsymbol{\mu}_{\mathbf{f}}, \boldsymbol{\Sigma}_{\mathbf{f}}\right)$ with

$$
\begin{aligned}
\boldsymbol{\mu}_{\mathbf{f}}=\mathbb{E}[\mathbf{f}] & =\boldsymbol{\Phi} \boldsymbol{\mu}_{\mathbf{w}} \\
\boldsymbol{\Sigma}_{\mathbf{f}}=\operatorname{Cov}(\mathbf{f}) & =\boldsymbol{\Phi} \boldsymbol{\Sigma}_{\mathbf{w}} \boldsymbol{\Phi}^{\top}
\end{aligned}
$$

Towards Gaussian Processes

- Recall that in Bayesian linear regression, we assume noisy Gaussian observations of the underlying function.

$$
y_{i} \sim \mathcal{N}\left(f_{i}, \sigma^{2}\right)=\mathcal{N}\left(\mathbf{w}^{\top} \phi\left(\mathbf{x}_{i}\right), \sigma^{2}\right)
$$

- The observations y are jointly Gaussian, just like f.

$$
\begin{aligned}
\mathbb{E}\left[y_{i}\right] & =\mathbb{E}\left[f\left(\mathbf{x}_{i}\right)\right] \\
\operatorname{Cov}\left(y_{i}, y_{j}\right) & = \begin{cases}\operatorname{Var}\left(f\left(\mathbf{x}_{i}\right)\right)+\sigma^{2} & \text { if } i=j \\
\operatorname{Cov}\left(f\left(\mathbf{x}_{i}\right), f\left(\mathbf{x}_{j}\right)\right) & \text { if } i \neq j\end{cases}
\end{aligned}
$$

- In vectorized form, $\mathbf{y} \sim \mathcal{N}\left(\boldsymbol{\mu}_{\mathbf{y}}, \boldsymbol{\Sigma}_{\mathbf{y}}\right)$, with

$$
\begin{aligned}
& \boldsymbol{\mu}_{\mathbf{y}}=\boldsymbol{\mu}_{\mathbf{f}} \\
& \boldsymbol{\Sigma}_{\mathbf{y}}=\boldsymbol{\Sigma}_{\mathbf{f}}+\sigma^{2} \mathbf{I}
\end{aligned}
$$

Towards Gaussian Processes

- Bayesian linear regression is just computing the conditional distribution in a multivariate Gaussian!
- Let \mathbf{y} and \mathbf{y}^{\prime} denote the observables at the training and test data.
- They are jointly Gaussian:

$$
\binom{\mathbf{y}}{\boldsymbol{y}^{\prime}} \sim \mathcal{N}\left(\binom{\boldsymbol{\mu}_{\mathbf{y}}}{\boldsymbol{\mu}_{\mathbf{y}^{\prime}}},\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{\mathrm{yy}} & \boldsymbol{\Sigma}_{\mathrm{yy}^{\prime}} \\
\boldsymbol{\Sigma}_{\mathrm{y}^{\prime} \mathbf{y}} & \boldsymbol{\Sigma}_{\mathrm{y}^{\prime} \mathbf{y}^{\prime}}
\end{array}\right)\right) .
$$

- The predictive distribution is a special case of the conditioning formula for a multivariate Gaussian:

$$
\begin{aligned}
& \mathbf{y}^{\prime} \mid \mathbf{y} \sim \mathcal{N}\left(\boldsymbol{\mu}_{\mathbf{y}^{\prime} \mid \mathbf{y}}, \boldsymbol{\Sigma}_{\mathbf{y}^{\prime} \mid \mathbf{y}}\right) \\
& \boldsymbol{\mu}_{\mathbf{y}^{\prime} \mid \mathbf{y}}=\boldsymbol{\mu}_{\mathbf{y}^{\prime}}+\boldsymbol{\Sigma}_{\mathrm{y}^{\prime} \mathbf{y}} \boldsymbol{\Sigma}_{\mathrm{yy}}^{-1}\left(\mathbf{y}-\boldsymbol{\mu}_{\mathbf{y}}\right) \\
& \boldsymbol{\Sigma}_{\mathbf{y}^{\prime} \mid \mathbf{y}}=\boldsymbol{\Sigma}_{\mathbf{y}^{\prime} \mathbf{y}^{\prime}}-\boldsymbol{\Sigma}_{\mathrm{y}^{\prime} \mathbf{y}} \boldsymbol{\Sigma}_{\mathrm{yy}}^{-1} \boldsymbol{\Sigma}_{\mathrm{yy}}{ }^{\prime}
\end{aligned}
$$

- We're implicitly marginalizing out w!

Towards Gaussian Processes

- The marginal likelihood is just the PDF of a multivariate Gaussian:

$$
\begin{aligned}
p(\mathbf{y} \mid \mathbf{X}) & =\mathcal{N}\left(\mathbf{y} ; \boldsymbol{\mu}_{\mathbf{y}}, \boldsymbol{\Sigma}_{\mathbf{y}}\right) \\
& =\frac{1}{(2 \pi)^{d / 2}\left|\boldsymbol{\Sigma}_{\mathbf{y}}\right|^{1 / 2}} \exp \left(-\frac{1}{2}\left(\mathbf{y}-\boldsymbol{\mu}_{\mathbf{y}}\right)^{\top} \boldsymbol{\Sigma}_{\mathbf{y}}^{-1}\left(\mathbf{y}-\boldsymbol{\mu}_{\mathbf{y}}\right)\right)
\end{aligned}
$$

Towards Gaussian Processes

- To summarize:

$$
\begin{aligned}
\boldsymbol{\mu}_{\mathbf{f}} & =\boldsymbol{\Phi} \boldsymbol{\mu}_{\mathbf{w}} \\
\boldsymbol{\Sigma}_{\mathbf{f}} & =\boldsymbol{\Phi} \boldsymbol{\Sigma}_{\mathbf{w}} \boldsymbol{\Phi}^{\top} \\
\boldsymbol{\mu}_{\mathbf{y}} & =\boldsymbol{\mu}_{\mathbf{f}} \\
\boldsymbol{\Sigma}_{\mathbf{y}} & =\boldsymbol{\Sigma}_{\mathbf{f}}+\sigma^{2} \mathbf{I} \\
\boldsymbol{\mu}_{\mathbf{y}^{\prime} \mid \mathbf{y}} & =\boldsymbol{\mu}_{\mathbf{y}^{\prime}}+\boldsymbol{\Sigma}_{\mathbf{y}^{\prime} \mathbf{y}} \boldsymbol{\Sigma}_{\mathbf{y y}}^{-1}\left(\mathbf{y}-\boldsymbol{\mu}_{\mathbf{y}}\right) \\
\boldsymbol{\Sigma}_{\mathbf{y}^{\prime} \mid \mathbf{y}} & =\boldsymbol{\Sigma}_{\mathbf{y}^{\prime} \mathbf{y}^{\prime}}-\boldsymbol{\Sigma}_{\mathbf{y}^{\prime} \mathbf{y}} \boldsymbol{\Sigma}_{\mathbf{y y}}^{-1} \boldsymbol{\Sigma}_{\mathbf{y y}} \\
p(\mathbf{y} \mid \mathbf{X}) & =\mathcal{N}\left(\mathbf{y} ; \boldsymbol{\mu}_{\mathbf{y}}, \boldsymbol{\Sigma}_{\mathbf{y}}\right)
\end{aligned}
$$

- After defining $\boldsymbol{\mu}_{\mathrm{f}}$ and $\boldsymbol{\Sigma}_{\mathbf{f}}$, we can forget about \mathbf{w} and \mathbf{x} !
- What if we just let $\boldsymbol{\mu}_{\mathrm{f}}$ and $\boldsymbol{\Sigma}_{\mathrm{f}}$ be anything?

Gaussian Processes

- When I say let $\boldsymbol{\mu}_{\boldsymbol{f}}$ and $\boldsymbol{\Sigma}_{\mathbf{f}}$ be anything, I mean let them have an arbitrary functional dependence on the inputs.
- We need to specify
- a mean function $\mathbb{E}\left[f\left(\mathbf{x}_{i}\right)\right]=\mu\left(\mathbf{x}_{i}\right)$
- a covariance function called a kernel function:

$$
\operatorname{Cov}\left(f\left(\mathbf{x}_{i}\right), f\left(\mathbf{x}_{j}\right)\right)=k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

- Let $\mathbf{K}_{\mathbf{X}}$ denote the kernel matrix for points \mathbf{X}. This is a matrix whose (i, j) entry is $k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$.
- We require that $\mathbf{K}_{\mathbf{x}}$ be positive semidefinite for any \mathbf{X}. Other than that, μ and k can be arbitrary.

Gaussian Processes

- We've just defined a distribution over function values at an arbitrary finite set of points.
- This can be extended to a distribution over functions using a kind of black magic called the Kolmogorov Extension Theorem. This distribution over functions is called a Gaussian process (GP).
- We only ever need to compute with distributions over function values. The formulas from a few slides ago are all you need to do regression with GPs.
- But distributions over functions are conceptually cleaner.

GP Kernels

- One way to define a kernel function is to give a set of basis functions and put a Gaussian prior on w.
- But we have lots of other options. Here's a useful one, called the squared-exp, or Gaussian, or radial basis function (RBF) kernel:

$$
k_{\mathrm{SE}}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\sigma^{2} \exp \left(-\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}}{2 \ell^{2}}\right)
$$

- More accurately, this is a kernel family with hyperparameters σ and ℓ.
- It gives a distribution over smooth functions:

GP Kernels

$$
k_{\mathrm{SE}}\left(x_{i}, x_{j}\right)=\sigma^{2} \exp \left(-\frac{\left(x_{i}-x_{j}\right)^{2}}{2 \ell^{2}}\right)
$$

- The hyperparameters determine key properties of the function.
- Varying the output variance σ^{2} :

- Varying the lengthscale ℓ :

GP Kernels

- The choice of hyperparameters heavily influences the predictions:

(b), $\ell=0.3$

(a), $\ell=1$

(c), $\ell=3$
- In practice, it's very important to tune the hyperparameters (e.g. by maximizing the marginal likelihood).

GP Kernels

$$
k_{\mathrm{SE}}\left(x_{i}, x_{j}\right)=\sigma^{2} \exp \left(-\frac{\left(x_{i}-x_{j}\right)^{2}}{2 \ell^{2}}\right)
$$

- The squared-exp kernel is stationary because it only depends on $x_{i}-x_{j}$. Most kernels we use in practice are stationary.
- We can visualize the function $k(0, x)$:

GP Kernels

- The periodic kernel encodes for a probability distribution over periodic functions

GP Kernels

- The linear kernel results in a probability distribution over linear functions

GP Kernels

- The Matern kernel is similar to the squared-exp kernel, but less smooth.
- See Chapter 4 of GPML for an explanation (advanced).
- Imagine trying to get this behavior by designing basis functions!

(a)

(b)

GP Kernels

- We get exponentially more flexibility by combining kernels.
- The sum of two kernels is a kernel.
- This is because valid covariance matrices (i.e. PSD matrices) are closed under addition.
- The sum of two kernels corresponds to the sum of functions.

Additive kernel

Linear + Periodic

$$
k\left(x, y, x^{\prime}, y^{\prime}\right)=k_{1}\left(x, x^{\prime}\right)+k_{2}\left(y, y^{\prime}\right)
$$

e.g. seasonal pattern w/ trend

GP Kernels

- A kernel is like a similarity function on the input space. The sum of two kernels is like the OR of their similarity.
- Amazingly, the product of two kernels is a kernel. (Follows from the Schur Product Theorem.)
- The product of two kernels is like the AND of their similarity functions.
- Example: the product of a squared-exp kernel (spatial similarity) and a periodic kernel (similar location within cycle) gives a locally periodic function.

GP Kernels

- Modeling CO2 concentrations: trend + (changing) seasonal pattern + short-term variability + noise
- Encoding the structure allows sensible extrapolation.

Summary

- Bayesian linear regression lets us determine uncertainty in our predictions.
- We can make it nonlinear by using fixed basis functions.
- Bayesian Occam's Razor is a sophisticated way of penalizing the complexity of a distribution over functions.
- Gaussian processes are an elegant framework for doing Bayesian inference directly over functions.
- The choice of kernels gives us much more control over what sort of functions our prior would allow or favor.
- Next time: Bayesian neural nets, a different way of making Bayesian linear regression more powerful.

